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Abstract

Free trade increases economic activity in the long run but produces significant labor market
disruptions. I study the short-term and long-term effects of trade liberalization on workers by
examining how young adults in the United States responded to the post-2000 U.S.-China trade
boom. Because adjustment frictions increase with age, the long-term impacts of trade are de-
termined by not only how but also where in the lifecycle workers respond to trade shocks. To
document these adjustment mechanisms, I assemble several datasets and employ multiple iden-
tification strategies. The main empirical approach leverages the geographic variation in local
exposure to China’s obtaining permanent normal trade relation (PNTR) status in 2000. Over-
all, I find that young people’s short-term responses to trade liberalization were overwhelmingly
negative. In particular, I find that PNTR essentially had no college attainment effects but in
fact raised the incidence of several undesirable outcomes. Those negative outcomes include
lower geographic and industry mobility and increased engagement in criminal activities and
risky health behaviors. I also show that PNTR significantly diminished young adults’ chances
of long-term economic success. My findings imply that without government intervention, the
disruptive effects of trade will likely remain high in the long run.
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1 Introduction

Trade liberalization creates significant economic disruptions; as a result, international trade re-
mains politically contentious in the United States. Historically, mainstream economists have
emphasized the positive effects of trade, such as lowering consumer prices, increasing product
variety, and lifting economic activity in the long run, but mostly treated the uneven labor market
impacts as short-term disturbances. Only with the mounting evidence on the slow U.S. labor
market adjustments to the China import shock in the early 2000s (Autor, Dorn, and Hanson
2013) has the field begun to grapple with the potential persistence of trade’s disruptive effects.
Whether the disruptions are enduring or short-lived depends on how workers respond to trade-
induced labor demand changes.

In this study, I present new evidence on the short-term and long-term effects of trade by
studying how young adults in the United States responded to the post-2000 U.S.-China trade
boom and how their responses relate to long-term economic outcomes.1 The population I con-
sider consists of college-goers (aged 18 to 24) and recent college graduates (aged 25 to 34). To
my knowledge, this is the first study to explicitly assess the impact of trade on young people’s
transitions into adulthood and the labor market. The study of these workers is important for two
main reasons. First, older workers have already made various forms of irreversible investments
in human, social, and health capital—the main channels of trade adjustment that I consider—and
thus face higher adjustment frictions.2 Conversely, young adults have considerable latitude in
potential adjustment mechanisms, especially along the educational attainment margin. Second,
as the returns on those investments compound over time and young people have more periods
for the benefits to accrue, young people also have strong incentives to make those investments.

My consideration of workers’ potential channels of trade adjustment follows the literature on
worker responses to local labor demand shocks. From a theoretical perspective, this vast litera-
ture centers on how changes in local economic conditions—through altering foregone earnings
and future expected earnings—affect workers’ time allocation between labor market and non-
labor market activities (Becker 1962, 1965). To aid the discussion of my results, I conceptualize
the types of responses identified in the literature as either “productive” or “nonproductive.” Pro-
ductive responses correspond to actions that can improve economic outlook. Nonproductive
responses are actions that can either harm or do not directly improve labor market prospects. To
analyze a wide array of outcomes, I assemble data from several sources and employ multiple
identification strategies leveraging the same trade shock.

1. China offers a rich case study as it constitutes most of the import growth from low-wage countries in the United
States since 2000 (Autor, Dorn, and Hanson 2016).

2. For purposes of this discussion, adjustment frictions refer to factors that impede or deter worker reallocation
across industries and geographies.
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My main empirical approach leverages the cross-commuting zone (CZ) variation in manu-
facturing declines induced by China’s obtaining permanent normal trade relation (PNTR) status
in 2000. This approach is motivated by a growing body of work that documents the contribution
of PNTR to the surge in U.S. imports from China in the early 2000s (Pierce and Schott 2016a;
Handley and Limão 2017). PNTR, which went into effect with China’s accession to the World
Trade Organization (WTO) in 2001, formalized China’s normal trade relation (NTR) status. The
trade policy was unusual in that it promoted trade by reducing the uncertainty surrounding future
tariff rates, not by lowering actual tariff rates. Reductions in such trade policy uncertainty have
been shown to increase trade flows by fostering and accelerating exporter entry (Handley 2014;
Handley and Limão 2015, 2017) and inducing more productive firms to export (Feng, Li, and
Swenson 2017).

I measure local PNTR exposure using the CZ employment-weighted average of the Pierce
and Schott (2016a) industry-level “NTR gaps.” They define the NTR gaps as the difference
between two sets of tariff rates. The first set of tariff rates is the relatively high non-NTR tariff
rates set by the Smoot-Hawley Act of 1930. These rates would have been applied to Chinese
goods had China lost its NTR status. The second set is the relatively low NTR tariff rates
reserved for WTO members set in 1999. A higher NTR gap implies that the industry experienced
a more substantial decline in tariff uncertainty following China’s WTO entry, which likely led to
faster growth in imports from China and steeper employment declines. For ease of interpretation,
the results are the implied effects of a one standard deviation increase in PNTR, which is about
2.78 percentage points.

In using PNTR-induced variation in trade exposure for identification, I rely on the im-
plicit assumption that local exposure to PNTR is uncorrelated with unobserved secular trends
or shocks in labor supply and demand. Using a difference-in-difference approach and several
Bureau of Labor Statistics (BLS) local employment datasets from 1990 to 2015, I first establish
that the China import shock had strong displacement effects, particularly in the manufacturing
sector. Next, I perform event studies to show that local employment outcomes exhibited parallel
pre-event trends and sharp breaks at precisely the time the trade policy went into effect. Because
labor demand changes associated with productivity growth and labor supply shocks are smooth
and continuous (Charles, Hurst, and Notowidigdo 2018), evidence from these analyses suggests
that alternative economic shocks, such as automation, were unlikely to be the main factor. Fur-
ther, I show that other shocks that coincided with China’s WTO entry and could have impacted
Chinese import growth, such as the tech bust, fail to explain the observed employment trends.

Having established the plausible exogeneity of PNTR, I begin the analysis by showing that
rising trade pressures from China created strong incentives for young people to attend college. I
show that PNTR not only reduced young people’s current job opportunities but also significantly
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diminished their economic prospects. I measure young adults’ current and future employment
opportunities using the labor market outcomes of noncollege-educated workers between 18 and
34 years old and between 35 and 54 years old, respectively. The latter group corresponds to
a group of “prime working-age” (hereinafter “prime-aged”) workers. Using the 1990, 2000,
2005–2015 individual-level Census and American Community Survey (ACS) data, I show that
both groups of noncollege workers experienced similar trade-induced reductions in employment
rates and earnings. I also show that college-educated workers, especially bachelor’s degree
holders, experienced much less adverse labor market effects, especially on the employment
margin, compared to noncollege workers.

Despite the positive returns to college degree receipt, I find that young adults did not have
strong skill acquisition responses to the China import shock. Using the aggregated institution-
level college enrollment and completion data from the Integrated Postsecondary Education Sys-
tem (IPEDS), I show that PNTR slightly increased college enrollment by 4 percent relative to
the sample mean, with the effects concentrated at two-year colleges and public institutions.3

While this finding verifies the prediction of the human capital theory (Becker 1962), my results
also show that there were no other economically meaningful or statistically significant educa-
tional responses. In particular, I find no evidence of a four-year college enrollment effect or any
completion effects. Possible foregone earnings and student debt accumulation make enrollment
without attainment an undesirable outcome.

Could young people’s geographic relocation or industry transitions—which could have al-
lowed them to find new jobs even without significant skill acquisitions—explain the finding? To
assess these employment transitions, I exploit the unique breadth of outcomes covered in the
1997 sample of the National Longitudinal Survey of Youth (NLSY97). In an effort to provide a
concise analysis of the various outcomes, I create a summary index for each outcome category
and formulate z-scores of the summary indices such that larger positive values indicate more de-
sirable outcomes. My NLSY97 identification strategy leverages the individual-panel structure
of the dataset and young adults’ place of residence in 1997. This strategy, distinct from repeated
cross-sectional analysis (e.g., Pierce and Schott 2016b), allows me to track trade’s impact on a
group of 6,772 young adults from 2001, when they were aged between 16 and 20, to their early
30s.

Using the NLSY97, I show that migration and industry-switching were unlikely to be the
main channels of trade adjustment. Specifically, young workers initially living in higher PNTR
CZs experienced significantly higher cumulative exposure to PNTR after 2000 not only at the
CZ level but also at the industry level, indicating lower worker mobility on those margins. Trade-
exposed workers also were more likely to be employed in routine-intensive occupations—that

3. “College” refers to all postsecondary institutions.
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is, jobs high in repetitive and codifiable content that make them susceptible to automation and
offshoring (Autor and Dorn 2013), though the occupation-level estimates are much smaller and
not statistically significant.

In addition to lower geographic and industry mobility, youth exposure to the import shock
significantly raised the incidence of several unappealing risky behavior outcomes. Those out-
comes include criminal behaviors, such as being arrested and being in jail, as well as risky
health behaviors, such as alcohol consumption and illegal drug use. By contrast, I find much
weaker evidence for family and childrearing responsibilities impacting young adults’ schooling
and employment choices. Together, the evidence suggests that nonproductive trade adjustment
mechanisms may have reinforced and prolonged the negative labor market effects of Chinese
import competition.

Lastly, I show that the import shock strongly diminished young people’s chances of future
economic success, even more than a decade after the trade policy change. I reference Chetty et
al. (2011) and create an adult economic success measure using five outcomes: total assets at age
30, has owned any home by age 30, has been married by age 30, has moved out of state by age
30, and live in a higher socioeconomic status community at age 30 as measured by the county
college population share. As many of the individual components are positively correlated with
future earning trajectories conditional on income, I interpret the outcome not only as a measure
of young adult’s economic self-sufficiency at age 30 but also a broad approximation to their
future economic success. Further, because the Chinese import surge had largely subsided by
the early 2010s, the outcome measure arguably provides a good indication for trade’s potential
effects over the next few decades as the NLSY97 respondents begin to retire. I show that PNTR’s
effect on future earnings trajectories is significant, negative, and ranges between -4.26 and -6.43
percent relative to the standard deviation. This finding shows that without changes to current
trade adjustment policies, the geographic disparities in workers’ outcomes resulting from trade
liberalization will likely persist.

This paper adds to an active and growing number of studies that document the negative non-
labor market effects of trade. Those adverse effects include the increase in political polarization
(Autor et al. 2016; Che et al. 2016), the fall in local public good provision (Feler and Senses
2017), and the rise in the incidence of single mothers (Autor, Dorn, and Hanson 2017). In
this emerging body of work, this study is closest in scope to Pierce and Schott (2016b) who
document trade’s negative effects on health and mortality.4 My analysis extends the literature in
several important ways. First, while prior studies have examined young adults as part of their
investigations, this is the first study to document comprehensively young people’s transitions

4. One distinction is that they measure the mortality rates associated with different risky health behaviors, whereas
I directly measure the incidence of those behaviors.
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into adulthood as well as their responses to trade shocks across multiple related dimensions.
Second, I am able to quantify the transitional costs of trade liberalization in terms of its effect
on workers’ chances of future economic success. Finally, my analysis improves on current
estimates of the long-term impacts of trade by leveraging longitudinal data rather than repeated
cross-sections. By combining a series of datasets in a novel way, I am therefore able to avoid the
concerns around the effects of worker mobility, especially among young people, on estimated
impacts—issues that were not fully addressed by the previous literature.5

My work is also related to the literature on young people’s human capital adjustments to
local labor demand shocks (Black, McKinnish, and Sanders 2005; Cascio and Narayan 2015;
Charles, Hurst, and Notowidigdo 2018).6 Among the studies, only Charles, Hurst, and No-
towidigdo (2018) study college enrollment and attainment.7 This study differs from prior work
in several aspects. First, my local labor demand shock is induced by a change in trade policy.
Second, the shock is negative. Third, I do not find any completion effects. The distinctions in
the findings highlight potential differences in workers’ responses to positive and negative local
labor demand shocks. They also underscore how the geographic concentration of manufacturing
industries, which propagates the adverse effects of trade shocks, and the lower baseline school-
ing attainment in those communities can impact the size of educational responses. In terms
of scope within this literature, this paper most resembles the work of Greenland and Lopresti
(2016), who document a positive relationship between rising Chinese import competition and
U.S. high school graduation rates.8 While these results are instructive, whether the new high
school graduates went on to obtain a college degree remains unclear. As economic outcomes
continue to decline for U.S. noncollege graduates, my study bridges an important gap in this
literature. My results, which do not show a significant college attainment effect, also highlight
potential frictions in degree attainment in the postsecondary education market that are absent in
the secondary education market.

Together, my findings—the absence of significant productive responses and the surprising
number of nonproductive responses by young adults—have several strong policy implications.
They imply that current trade adjustment policies, such as the Trade Adjustment Assistance
(TAA) program, have not been effective in easing the labor market transitions of many young

5. Although I did not find a strong migration response in my sample, it was not clear ex ante that this would be
the case. For example, Autor, Dorn, and Hanson (2013) find no evidence of population adjustments to rising import
competition, while Greenland, Lopresti, and McHenry (2018) find evidence of small and delayed migration responses.

6. A related body of work studies how local economic conditions during early childhood affect educational attain-
ment and income in the long run (e.g., Stuart 2017).

7. Black, McKinnish, and Sanders (2005) and Cascio and Narayan (2015) examine the impact of technology shocks
on secondary educational attainment.

8. Using a the Census/ACS data, which is a different dataset from theirs, I also find an increase in the number of
high school graduates, though my estimate is smaller.
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educational responses. In terms of scope within this literature, this paper most resembles the work 
of Greenland and Lopresti (2016),

who document a positive relationship between rising Chinese import competition and U.S. high school graduation rates.8

8. Using a the Census/ACS data, which is a different dataset from theirs, I also find an increase in the number of high school graduates, 
though my estimate is smaller. 

While these results are instructive, whether the new high school graduates went on to obtain a 
college degree remains unclear. As economic outcomes continue to decline for U.S. noncollege 
graduates, my study bridges an important gap in this literature. My results, which do not show a 
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people.9 A related implication is that the long-term fiscal costs of trade liberalization may be
higher than what the current estimates indicate (e.g., Autor, Dorn, and Hanson 2013). This is be-
cause persistent joblessness among young people, compared to among older workers, will result
in higher lifetime usage of public assistance. Depressed local economic activity can also lead to
declines in state and local government revenues, which can in turn decrease public college fund-
ing, lower student-oriented resources, and further dampen the educational attainment of future
generations of workers (Bound, Lovenheim, and Turner 2010).10 Lastly, my results strongly
suggest that economic policies that fail to consider the interplay between the labor market and
non-labor market factors that impact worker adjustment will achieve limited success.

The rest of this paper is organized as follows. Section 2 describes the data sources and defines
the key variables. Section 3 presents the labor market results using the BLS and Census/ACS
data. Section 4 presents the IPEDS college enrollment and attainment results. Section 5 quanti-
fies the significance of additional adjustment channels and discusses the long-term implications
of trade’s disruptive effects. Section 6 concludes.

2 Data and Measurement

Section 2.1 defines the local labor market. Section 2.2 describes the measurement of the main
outcomes in the three datasets I use to study young adults. Section 2.3 discusses the construction
of the trade variables.

2.1 Local Labor Markets

I approximate local labor markets using commuting zones (CZs). A commuting zone is a cluster
of counties with strong commuting ties internal to the clusters (Tolbert and Sizer 1996). I prefer
CZs as my treatment unit because they cover both urban and rural areas and minimize labor mo-
bility across treatment units. Because of the distinct industrial structure of Alaska and Hawaii, I
restrict the analysis to the 48 contiguous U.S. states, leaving 722 CZs.

CZ demographic and economic information come from the 100 percent Census data, Quar-
terly Census of Employment and Wages (QCEW), Local Area Unemployment (LAU), County
Business Patterns (CBP), and Surveillance, Epidemiology, and End Results (SEER). Table A1
in the Appendix documents the sample periods and the outcome variables in each dataset.

9. However, there is evidence to suggest that, conditional on program participation, TAA has been effective in
re-training workers (Hyman 2018).

10. I present suggestive evidence of trade-induced declines in public college funding and resources, though my
estimates are not always precisely measured.
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2.2 Main Outcomes

2.2.1 Census/ACS Data

The main purpose of using the individual-level public-use 1990, 2000, 2005–2015 Census and
American Community Survey (ACS) data (Ruggles et al. 2019) is to provide the link between
trade-induced local labor demand changes and young people’s skill acquisition responses. To
this end, I collect data on the employment and earnings of 18–54 year-old college workers
and noncollege workers, which include both high school dropouts and high school graduates (or
equivalent). Earnings are inflated to 2015 dollars using the Consumer Price Index (CPI). Weekly
wages are calculated by dividing total income from wages and salary by the total number of
weeks worked last year.11

I impose several sample restrictions to the Census/ACS data to increase their comparability
with the other datasets in my analysis. I restrict the samples to noninstitutionalized workers
living in their state of birth at the time of the interview. This approach follows Charles, Hurst,
and Notowidigdo (2018) and aims to focus on the subset of the local population whose CZ
of residence during youth is likely the same as their current residence. One drawback of this
strategy is that I will miss the portion of workers who have moved away from trade-exposed
CZs. If migration among young people is an important margin of worker response, as shown by
the previous literature (e.g., Bound and Holzer 2000), then neglecting population adjustments
may over-state the magnitude of the negative effects of trade. I address this concern in Section
5 using a longitudinal dataset that allows me to track the same group of workers over time.

For the analysis on college-educated workers, I exclude respondents aged between 18 and 24.
This restriction addresses two data constraints. One constraint is that the Census/ACS data only
record the highest degree attained by the respondents. Another constraint is that the Census/ACS
data are unavailable at the CZ level between 2001 and 2004, during a surge of Chinese imports.
As workers aged between 18 and 24 were likely to be enrolled in school, excluding them from
the analysis arguably better captures workers’ complete skill acquisition responses to the China
import shock.

2.2.2 IPEDS Data

Next, I examine the human capital impacts of trade liberalization using the 1990–2015 Integrated
Postsecondary Education System (IPEDS). IPEDS is an aggregated institution-level dataset cov-
ering both public and private colleges eligible for Federal Title IV student aid. The advantages
of the dataset are its extensive coverage of postsecondary education-related outcomes across
time and space. These features make the IPEDS data ideal for examining young adults’ skill

11. Hourly wages are not used because the ACS data only report them in intervals starting in 2008.
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acquisition responses. One disadvantage of the dataset is that the IPEDS data leave out both
demographic information, such as age, and labor market information on college enrollees.

In the IPEDS data, I restrict the sample of postsecondary institutions to all two-year and
four-year colleges with geographic (county) identifiers. “Two-year colleges” are colleges whose
highest degree offered is less than a bachelor’s degree, which include both community colleges
and less than two-year institutions. “Four-year colleges” include all remaining colleges. To
focus on the local response to trade shocks, I follow the literature (Charles, Hurst, and No-
towidigdo 2018) and drop selective four-year colleges from the main analysis.12 I show in Table
B6 in the Appendix that the IPEDS results are not sensitive to using different sample defini-
tions. Those differences include the inclusion of selective four-year colleges, the exclusion of
less-than-two-year colleges, whose sampling issues have been well-documented (Cellini 2009),
or the exclusion of for-profit colleges.

College enrollment is measured by the first-time full-time fall enrollment (hereinafter “en-
rollment”) for undergraduate degree or certificate-seeking students. College completion is mea-
sured by the total number of undergraduate degrees and sub-baccalaureate certificates. Both
enrollment and completion counts are aggregated to the CZ-institution level and adjusted by
CZs’ 18 to 34 population from the SEER data. Results remain unchanged when I adjust by 18
to 24 population or use alternative measurements of enrollment (total first-time, total full-time,
total fall) or completion (associate’s, bachelor’s, certificates); for example, see Table B7 in the
Appendix.13

2.2.3 NLSY97 Data

The 1997 sample of the National Longitudinal Survey of Youth (NLSY97) dataset is a longi-
tudinal survey of 8,984 individuals who were interviewed annually until 2011 and biennially
thereafter. In 2001, respondents were aged 16 to 20 years old, that is, around college-attending
age. The age range, in addition to the wealth of information on young adults, makes the NLSY97
data ideal for studying young workers.

The restricted-use version of the NLSY97 dataset contains data on respondents’ county of
residence. I use this information to match to CZ and assign the intensity of PNTR exposure. To
guard against endogenous migration over the sample period, I assign individuals to CZs based on

12. A selective four-year college is defined as having a Barron’s 2009 selectivity index between 1 (most competitive)
and 3 (very competitive).

13. My method of adjustment follows the convention in the literature (e.g., Pierce and Schott 2016b; Autor, Dorn,
and Hanson 2017; Charles, Hurst, and Notowidigdo 2018). The advantage of using first-time full-time fall enrollment
is that this measure is unaffected by changes in time to completion, which has been shown to increase over my sample
period (Bound, Lovenheim, and Turner 2012). Other measures of local human capital accumulation, such as total
full-time enrollment or total fall enrollment, are not to immune to those changes.
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their county of residence in 1997. This method of assignment allows me to link workers’ trade
exposure during youth to their adult outcomes.14 Outcomes are measured between 2001 to the
first survey round after young adults have turned 30, during which important asset information
such as home ownership is collected.15 Further, I restrict the sample to young adults in the
contiguous 48 U.S. states in 1997 to keep the sample consistent with the IPEDS and Census/ACS
analyses.

Using this dataset, I assess the multidimensional effects of trade. Here, the innovation is
to provide a comprehensive analysis of young adults’ responses and the long-term implications
of the import shock’s short-term disruptions. As such, my analysis not only covers a wide
range of outcomes (over 20 distinct outcomes), many of which are novel in the literature, but
also spans multiple outcome categories, including several worker mobility outcome categories
(geographic, industry, and occupation mobility), multiple risky behavior outcome categories
(criminal behavior and risky health behavior), one life event outcome category, and one long-
term economic outcome category.

To aid multiple hypotheses testing and to present the analysis in a succinct manner, I create
a summary index for each outcome category. Summary indices are created in three steps. First,
I create z-scores for the individual components of each summary index and then rescale the
z-scores such that higher values indicate more desirable outcomes. Second, I create summary
indices of the outcome categories by averaging the rescaled z-scores. Third, I standardize the
summary indices again to have a mean of zero and a standard deviation of one. Below, I briefly
discuss the individual components of each summary index. The complete list of the summary
indices and the individual components can be found in Table A4 in the Appendix.

First, to study worker mobility, I relate youths’ cumulative exposure to the China import
shock at the geographic and industry levels between 2001 and age 30 to their initial place of res-
idence. The geographic mobility summary index combines four geographic mobility outcomes:
average annual PNTR at the CZ level; has lived in a different state as 1997; has lived in a differ-
ent CZ as 1997; and has lived in a different state as 1997. The industry mobility summary index
consists of two outcomes: average annual PNTR at the industry level and has been employed
in manufacturing. I also separately examine whether trade-exposed youths were more likely to
be employed in occupations that were vulnerable to trade shocks as measured by an occupation
summary index. The occupation summary index averages annual routine, social, and math skill
intensities of employment. Occupation skill intensities are constructed using the 1998 Occu-
pational Information Network (O*NET). Routine-intensive jobs are susceptible to offshoring,
whereas social-skill and math-skill intensive jobs require localized knowledge and proximity to

14. The estimated effect of PNTR has the interpretation of the “intent-to-treat” (ITT) treatment effect.
15. The NLSY97 survey collects asset and home ownership information at five-age intervals starting at age 20.

9

The restricted-use version of the NLSY97 dataset contains data on respondents’ county of residence. I use this information to match to CZ and assign the intensity of PNTR 
exposure. To guard against endogenous migration over the sample period, I assign individuals to CZs based on their county of residence in 1997. This method of assignment 
allows me to link workers’ trade exposure during youth to their adult outcomes.14

14. The estimated effect of PNTR has the interpretation of the “intent-to-treat” (ITT) treatment effect. 

Outcomes are measured between 2001 to the first survey round after young adults have turned 30, during which important asset information such as home ownership is 
collected.15

15. The NLSY97 survey collects asset and home ownership information at five-age intervals starting at age 20. 

Further, I restrict the sample to young adults in the contiguous 48 U.S. states in 1997 to keep the 
sample consistent with the IPEDS and Census/ACS analyses.
Using this dataset, I assess the multidimensional effects of trade. Here, the innovation is to provide a comprehensive analysis of young adults’ responses and the long-term 
implications of the import shock’s short-term disruptions. As such, my analysis not only covers a wide range of outcomes (over 20 distinct outcomes), many of which are novel 
in the literature, but also spans multiple outcome categories, including several worker mobility outcome categories (geographic, industry, and occupation mobility), multiple 
risky behavior outcome categories (criminal behavior and risky health behavior), one life event outcome category, and one long- term economic outcome category. 

To aid multiple hypotheses testing and to present the analysis in a succinct manner, I create a 
summary index for each outcome category. Summary indices are created in three steps. First, I 
create z-scores for the individual components of each summary index and then rescale the 
z-scores such that higher values indicate more desirable outcomes. Second, I create summary 
indices of the outcome categories by averaging the rescaled z-scores. Third, I standardize the 
summary indices again to have a mean of zero and a standard deviation of one. Below, I briefly 
discuss the individual components of each summary index. The complete list of the summary 
indices and the individual components can be found in Table A4

in the Appendix.



other skill-intensive workers, making them more difficult to send overseas (Autor, Levy, and
Murnane 2003; Autor and Dorn 2013; Deming 2017).

Next, the two risky behavior summary indices concern criminal and risky health behaviors.
I use these two summary indices to document the undesirable worker responses that negatively
influence educational attainment and future employment outcomes.16 The criminal behavior
summary index includes the incidence of arrests, incarcerations, and joblessness associated with
incapacitation (has left work because of incapacitation; has not looked for work because of inca-
pacitation). The risky health behavior summary index measures behavioral responses associated
with “deaths of despair” (Case and Deaton 2017). The index includes four individual compo-
nents: monthly alcohol consumption (days); monthly illegal drug use (times); monthly alcohol
consumption before/during school or work (days); and monthly illegal drug use before/during
school or work (days).

The life event summary index measures the extent to which childrearing-related factors af-
fected young people’s schooling and employment decisions. Prior work (Lindo 2010) shows
that negative shocks to expected future earnings and lifetime returns on human capital invest-
ment can accelerate childrearing. Early childrearing increases family-related obligations and can
widen the college attendance-attainment gap (Cohen, Brawer, and Kisker 2013). To assess these
relationships, the summary index combines outcomes such as fertility choices as college-goers
and joblessness resulting from childcare or family reasons (has left work because of childcare or
family reasons; has not looked for work because of childcare or family reasons). I also include
a measure of the intensity of childrearing activities using an indicator for whether respondents
have had at least three children (one standard deviation above the mean) as college-goers.

Lastly, I measure young adults’ chances for long-term economic success. Because the
NLSY97 respondents were still relatively young in the last year of my survey (aged between
30 to 34 in 2015), I measure their lifetime earnings over the next few decades until retirement
(assuming they retire at age 65) using a method analogous to Chetty et al. (2011). I create an
adult economic success summary index using five outcomes positively associated with future
earnings trajectories and a higher socioeconomic status (SES): total assets at age 30, has owned
a home by age 30, has been married by age 30, has moved out of state by age 30, and lives in a
higher SES community at age 30, which is measured by the percent of county population with
college education.17 I interpret the summary index as a broad measure capturing workers’ early
economic success in young adulthood.

16. As summarized in the literature review by Cawley and Ruhm (2011), although the relationships between some
risky health behaviors and other labor market outcomes, such as wages and earnings, are ambiguous, their effects on
educational attainment and employment are generally negative.

17. This measure is based on the 2000 Census and thus should be unaffected by PNTR-induced changes in local
demographic composition.
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2.3 International Trade

Credible estimates of the impact of trade requires a plausibly exogenous measure of trade expo-
sure. To this end, my identification variation uses the Pierce and Schott (2016a) industry-level
trade exposure to China’s PNTR status, which went into effect at the end of 2001.18 Beginning
in 1980, the U.S. Congress began annually granting China normal trade relation (NTR) status.
The annual renewal gave China access to the relatively low NTR tariff rates reserved for WTO
members, but it also created substantial uncertainty surrounding future tariff rates. For instance,
in 1999, a year before China’s PNTR status, failure of renewal would have increased the mean
tariff rates from 4 percent to 37 percent.

Recent empirical evidence (e.g., Pierce and Schott 2016a; Handley and Limão 2017) shows
that although the U.S. tariffs applied on Chinese goods varied little prior to 2001, China’s WTO
accession—by eliminating the annual threat of high U.S. tariffs established under the Smoot-
Hawley Act of 1930—was still able to substantially increase Chinese exports to the United States
in the early 2000s. Figure 1 provides compelling visual evidence of PNTR’s impact. It shows
an inflection point in the relationship between U.S. manufacturing imports from China and U.S.
manufacturing decline at precisely the time of the policy change, with the imports doubling as a
share of the U.S. Gross Domestic Product in less than five years following trade liberalization.
Both the size and the rapidity of the China import shock in the early 2000s visibly surpassed
those of the Japan import shock in the 1980s and the Mexico import shock in the 1990s.

The regional specialization of manufacturing industries implies that the impact of PNTR on
local employment should be relatively larger in CZs that specialized in industries with higher
tariff uncertainty prior to the policy change. That is, high PNTR CZs should exhibit labor
market trends similar to those of low PNTR CZs in the pre-PNTR period. Further, because
they experienced relatively larger increases in trade, they also should display relatively steeper
declines in manufacturing employment after the trade policy change. Using this intuition, I
construct a measure of CZs’ PNTR exposure in two steps. First, I reference Pierce and Schott
(2016a) and measure industry-level PNTR exposure as the difference between the non-NTR
and NTR tariff rates, the “NTR gap,” in the year prior to the policy change. Formally, for an
industry j, NTR gap j = Non-NTR j−NTR j. NTR gaps capture industry-level tariff uncertainty,
as a higher NTR gap implies that the failure of NTR tariff renewal would have led to higher
tariff hikes. Pierce and Schott (2016a) show that manufacturing industries with higher NTR
gaps experienced significantly faster employment declines post PNTR. Second, I aggregate the

18. While there were other trade liberalization policies around the same time, such as the 1994 North American Free
Trade Agreement (NAFTA), their trade liberalization effects were likely to be smaller. For example, in 1993, over half
of the U.S. imports from Mexico were already entering the United States duty-free (Villareal and Fergusson 2017).
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were likely to be smaller. For example, in 1993, over half of the U.S. imports from Mexico were already entering the United States duty-free (Villareal and Fergusson 2017). 

Beginning in 1980, the U.S. Congress began annually granting China normal trade relation (NTR) 
status. The annual renewal gave China access to the relatively low NTR tariff rates reserved for 
WTO members, but it also created substantial uncertainty surrounding future tariff rates. For 
instance, in 1999, a year before China’s PNTR status, failure of renewal would have increased the 
mean tariff rates from 4 percent to 37 percent.
Recent empirical evidence (e.g., Pierce and Schott 2016a; Handley and Limão 2017)

shows that although the U.S. tariffs applied on Chinese goods varied little prior to 2001, China’s WTO accession—by 
eliminating the annual threat of high U.S. tariffs established under the Smoot- Hawley Act of1930—was still able to 
substantially increase Chinese exports to the United States in the early 2000s. Figure 1

provides compelling visual evidence of PNTR’s impact. It shows an inflection point in the relationship between U.S. 
manufacturing imports from China and U.S. manufacturing decline at precisely the time of the policy change, with the 
imports doubling as a share of the U.S. Gross Domestic Product in less than five years following trade liberalization. 
Both the size and the rapidity of the China import shock in the early 2000s visibly surpassed those of the Japan 
import shock in the 1980s and the Mexico import shock in the 1990s.

The regional specialization of manufacturing industries implies that the impact of PNTR on local 
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uncertainty prior to the policy change. That is, high PNTR CZs should exhibit labor market trends 
similar to those of low PNTR CZs in the pre-PNTR period. Further, because they experienced 
relatively larger increases in trade, they also should display relatively steeper declines in 
manufacturing employment after the trade policy change. Using this intuition, I construct a measure 
of CZs’ PNTR exposure in two steps. First, I reference Pierce and Schott (2016a)

and measure industry-level PNTR exposure as the difference between the non-NTR and NTR tariff rates, the “NTR 
gap,” in the year prior to the policy change. Formally, for an industry j, NTR gap j = Non-NTRj −NTRj. NTR gaps 
capture industry-level tariff uncertainty, as a higher NTR gap implies that the failure of NTR tariff renewal would 
have led to higher tariff hikes. Pierce and Schott (2016a)

show that manufacturing industries with higher NTR gaps experienced significantly faster employment declines post PNTR. Second, I aggregate the NTR gaps to the CZ level, 
weighted by local manufacturing employment composition in 1990:



NTR gaps to the CZ level, weighted by local manufacturing employment composition in 1990:

PNTRc = ∑
j∈Mfg

Emp jc1990

Empc1990
NTR gap j. (1)

Local industry composition is compiled using 1990 County Business Patterns.19 The base year
is chosen to be a decade before the policy change to alleviate concerns about the correlation
between local industry mix and contemporaneous shocks that affect local employment declines.
The geographic distribution of exposure to PNTR is plotted in Figure 2. The figure shows high
regional concentration of PNTR exposure in the Appalachian region in the Southeast and parts
of the Rust Belt in the Midwest. I also report the twenty most and least trade-exposed CZs in
Table A5.

The exogeneity of PNTRc relies on its orthogonality to unobserved local labor supply and
labor demand shocks, which requires plausibly controlling for confounding drivers of local man-
ufacturing decline. To this end, I include an extensive set of baseline 1990 CZ covariates, such
as demographic and labor market composition, in all my regressions. Demographic information
is calculated using the 100 percent Census data provided by the Missouri Census Data Center.20

The list of variables includes log population; share of the population employed in manufactur-
ing; share of the female population in the labor force; share of the population without a college
degree; share of the population that is black, Asian, and of other races (Native American and
Pacific Islander); share of population that is foreign-born; and average household income. To
alleviate the concern that there may still exist spurious correlation between PNTR and the CZ
controls, even though they are set in 1990, I show that the employment trends estimated without
controls (Figure B1 in the Appendix) are qualitatively similar to the employment trends esti-
mated using the full set of controls presented in the next section. Summary statistics of the CZ
controls are reported in Table A2.

3 Trade-Induced Changes in Local Economic Conditions

In this section, I show that trade-induced local labor demand declines created strong economic
incentives for young adults to go to college. Section 3.1 introduces the estimation equation and
the identification assumptions; Section 3.2 presents evidence of the validity of those assump-
tions; Section 3.3 uses the Census/ACS data to document the negative impacts of the China
import shock on young people’s job opportunities.

19. Suppressed CBP employment counts are imputed using the method in Acemoglu et al. (2015).
20. These datasets can be found on the Missouri Census Data Center website: http://mcdc.missouri.edu.
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3.1 Difference-in-Difference Methodology

I estimate how trade affects outcomes of interest between 1990 and 2015 using a difference-in-
difference methodology. The estimation equation is given by

ycrt = β
DDPNTRc×Postt + γ

′Xc,1990×Postt +ϕrt +ϕc + εcrt , (2)

where yct is an outcome in commuting zone c at time t. Robust standard errors are clustered at
the CZ level.

The regressor of interest is the interaction of PNTRc with the post-2001 dummy Postt . This
“dose-response” difference-in-difference specification allows PNTR to differentially affect CZs
according to initial exposure intensity. The vector Xc,1990 includes CZs’ demographic and em-
ployment composition in 1990, as discussed in Section 2.3. I also include region-by-year fixed
effects (ϕrt) and CZ fixed effects (ϕc) to capture time-varying changes across Census regions
(Northeast, Midwest, South, and West) and time-invariant differences across local labor mar-
kets, including PNTRc, respectively.21

The difference-in-difference identification conditions for using PNTR-induced variation in
trade exposure amounts to two assumptions. First, outcomes exhibit similar trends in the ab-
sence of the trade policy change. Second, no confounding labor demand or labor supply shocks
coincide with the timing of the policy change. Although counterfactual outcome trends cannot
be observed, I perform several event studies on local employment outcomes to show the absence
of pre-event trends. Futher, by controlling for the initial manufacturing share of employment,
identification comes from comparing high PNTR CZs to low PNTR CZs with similar manufac-

turing intensities. For confounding shocks to significantly bias my estimates, they would have
to be both uncorrelated with local manufacturing employment share and coincide with the tim-
ing of the trade policy change. Below, I argue that alternative explanations such as productivity
shocks are unlikely to drive the sharp breaks in the employment trends observed in the event
studies.

My use of trade policy-induced local labor demand shocks for identification also resembles
the growing number of “shift-share instrument” research designs. Although the difference-in-
difference methodology is distinct from those research designs, the unconfoundness condition
for using PNTR is related to the exogeneity conditions underlying the use of shift-share instru-
ments. Recent studies on this topic (e.g., Borusyak, Hull, and Jaravel 2018; Goldsmith-Pinkham,
Sorkin, and Swift 2018) make clear that instrument validity can be derived from either the or-
thogonality in the “shifts,” in the “shares,” or both, depending on the context of the study.

For my purposes, I argue that the orthogonality in the “shifts,” that is, the orthogonality of

21. Results are similar when using Census division-by-year or state-by-year fixed effects (see Table B4).
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industry-level NTR gaps to contemporary drivers of local manufacturing decline, is a plausi-
ble assumption. Under this identification condition, the shift-share instrument is valid when
industry-level shocks do not correlate with other industry unobservables, such as technology
shocks, or unobservables that correlate with local industrial composition. As demonstrated by
Pierce and Schott (2016a), the NTR tariff rates varied little in the years leading up to the trade
policy change. In fact, most of the variation in the NTR gaps comes from non-NTR tariff rates
that were set by the Smoot-Hawley Tariff Act of 1930. This insight implies that the manufactur-
ing decline induced by PNTR is a result of trade policies set over seventy years ago, which long
predate the secular decline in manufacturing and the advancements in information and com-
munication technologies, both of which began in the early 1980s. It is, therefore, difficult to
imagine that the tariff uncertainty created by the NTR gaps somehow spuriously correlate with
contemporaneous industry-level confounders in the manufacturing sector. Lastly, the “shift” in
my instrument is induced by a national trade policy change, making it likely to be exogenous to
local confounding shocks.

3.2 Local Labor Market Effects

Before turning to Census/ACS results, I first establish PNTR’s adverse employment effects on
local economies and check the validity of my identification assumptions.22 For this analysis,
I collect annual local employment data from the 1990–2015 Quarterly Census of Employment
and Wages (QCEW) and Local Area Unemployment (LAU). Table 1 presents the employment
results. Outcomes are scaled (multiplied by 100) such that the coefficients have the interpretation
of percent, percentage point, or per capita changes. Further, because a unit of PNTR has no
direct economic interpretation, the discussion hereinafter focuses on the implied effects of a one
standard deviation increase in PNTR (2.78 percentage points), which are reported in brackets.23

The estimates indicate that the China import shock significantly reduced local employment
opportunities. I estimate a one standard deviation increase in PNTR changed total employment
by -4.38 percent, with the strongly adverse effects in the manufacturing sectors (-6.53 percent)
and smaller and less precisely measured, though still negative, effects in the nonmanufacturing
sectors (-1.05 percent). The implied effects of a similar-sized increase in PNTR on (log) unem-
ployment, the unemployment rate, and the labor force-to-population ratio are 2.46 percent, 0.42

22. Several such relationships between local employment and trade have been examined in detail in prior studies
(e.g., Autor, Dorn, and Hanson 2013; Pierce and Schott 2016b), I report the analysis here for completeness. Differ-
ences in the measurement of trade exposure, treatment units, and sample periods complicate direct comparison of the
employment estimates between studies. Nonetheless, the implied effects of my estimates are relatively similar to the
estimates in Pierce and Schott (2016b), whose methodology most resembles mine.

23. This magnitude is similar to the size of the interquartile range of PNTR in my sample (about 2.70 percentage
points), another commonly used scale in the literature.
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percentage points, and -0.52 per capita, respectively.24

Figure 3 shows that the employment results are not driven by secular local labor market
trends, which could invalidate the causal interpretation of my results. The graphs plot the es-
timated coefficients from an event study model, in which I replace the post-2001 dummies in
Equation (2) with year dummies and normalize the coefficient associated with 2000 to be zero.
All of the graphs either show no pre-event trends or trends in the opposite direction that disap-
peared several years before the trade policy change.

One remaining concern is potential confounding shocks to the manufacturing sector. The
timing of China’s WTO entry raises the possibility that my estimates are contaminated by the
effects of the tech bust in the early 2000s. Changes in other trade policies during the same
period, such as changes in the NTR tariff rates or the phase-out of MFA import quotas, may
also influence my estimates. Lastly, the Great Recession of 2008 could have led to differential
labor market trends not captured by my current set of controls. I follow the literature (e.g.,
Pierce and Schott 2016a; Charles, Hurst, and Notowidigdo 2018) in addressing these concerns:
I remove high-tech industries that were likely exposed to the dot-com bubble in the measurement
of PNTR; I control for annual NTR tariff rates and MFA fill rates; I control for CZ exposure to
the housing boom using structural breaks in local housing prices.25 These estimates, shown in
Table B2 in the Appendix, are comparable to my preferred labor market estimates.

3.3 Opportunity Costs and Expected Lifetime Earnings

I now show that trade led to the disappearance of both current and future employment opportuni-
ties for young people, especially for those without college education. For this analysis, I rely on
the Census/ACS data because they contain worker demographics, such as age and educational
attainment, that are necessary for my purposes. The estimation equation is the same as Equa-
tion (2). I measure the opportunity costs of going to college using the labor market outcomes
of noncollege workers in the same age group (18 to 34 year-olds). This choice follows from
the assumption that those workers’ labor market outcomes reflect the foregone employment op-
portunities and earnings of marginal students deciding whether to exit the local labor force in
pursuit of a college degree. To measure young adults’ expected future earnings, I assume young
adults approximate their labor market trajectories using the current labor market outcomes of

24. The labor force-to-population ratio is calculated as the ratio of the labor force to 18 to 64 population. Because
Hurricane Katrina interrupted LAU data collection between 2005 and 2006, in my LAU analysis I exclude all CZs that
contained counties with missing unemployment statistics.

25. The Census identifies ten industries as Advanced Technology Production industries: biotechnology, life sci-
ence, opto-electronics, information and communications, electronics, flexible manufacturing, advanced materials,
aerospace, weapons, and nuclear technology. Fill rates are actual imports as a percentage of allowable imports under
the MFA import quotas. They can be interpreted as a measure of the extent to which the quotas were binding (Pierce
and Schott 2016a).
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3.3 Opportunity Costs and Expected Lifetime Earnings 

I now show that trade led to the disappearance of both current and future employment opportuni- ties for young 
people, especially for those without college education. For this analysis, I rely on the Census/ACS data because 
they contain worker demographics, such as age and educational attainment, that are necessary for my purposes. 
The estimation equation is the same as Equa- tion (2).

I measure the opportunity costs of going to college using the labor market outcomes of noncollege 
workers in the same age group (18 to 34 year-olds). This choice follows from the assumption that 
those workers’ labor market outcomes reflect the foregone employment op- portunities and earnings 
of marginal students deciding whether to exit the local labor force in pursuit of a college degree. To 
measure young adults’ expected future earnings, I assume young adults approximate their labor 
market trajectories using the current labor market outcomes of older workers in the same CZ.



older workers in the same CZ.26 I focus on the labor market outcomes of prime-aged workers
(aged 35 to 54) as they have higher labor force attachment than older cohorts.

The results in Table 2 show that noncollege workers, both young and old, experienced
strongly adverse trade-induced labor market impacts. Column 1 and 2 show that PNTR low-
ered young people’s employment rate (-1.38 percent point) and wages (-2.00 percent).27 The
next two columns report the same outcomes for prime-aged noncollege workers. The employ-
ment and wage estimates in Column 3 and 4 are generally comparable to those in the first two
columns, also showing strong and statistically significant negative effects.

Further, I show that college education investment had significant and positive long-term re-
turns, especially on the employment margin. The outcomes in Column 5 and 6 are the college-
noncollege employment and wage gaps among prime-aged workers. The estimates reflect the
relative changes in the labor market outcomes of college and nocollege workers in a particularly
CZ. I estimate a one standard deviation increase in PNTR significantly increased the college-
noncollege employment gap by 0.33 percentage points. The effect of a similar-sized increase
in PNTR on the college-noncollege wage gap is essentially zero, indicating no statistically dis-
cernible differences between the changes in the college premium in trade-exposed locales and
elsewhere. As the national college-noncollege wage gap rose precipitously over my sample pe-
riod, one interpretation of this result is that I cannot rule out possible long-term wage gains from
going to college for young workers without college education in trade-affected communities.

4 Effect of Trade on Human Capital Accumulation

Falling foregone earnings of college attendance and rising college labor market premium should
have created upward pressure on college enrollment and attainment in trade-exposed locales.
In particular, college attainment as a lever for upward economic mobility has been widely rec-
ognized. The positive impacts of college degree receipt also extend to geographic mobility,
especially over long distances (Wozniak 2010). Increased labor flows can help mitigate trade’s
negative labor market effects that arise from regional industry specialization. In this section, I
use the Integrated Postsecondary Education System (IPEDS) data to study how the import shock
changed the stock of local human capital.

26. Charles, Hurst, and Notowidigdo (2018) make similar assumptions.
27. The wage results are based on employed workers with identifiable occupations and had positive wages in the

previous year. This sample selection likely attenuates my estimates; that is, my estimates can be interpreted as the
lower bounds of the true adverse wage effects.
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4.1 College Enrollment and Attainment

My analysis in this section shows that the import shock had uneven effects on human capital
accumulation and ultimately failed as a lever to raise the educational trajectories of young peo-
ple. In particular, I do not find any evidence of college attainment effects despite some increases
in college enrollment. As most of the returns on education investments, especially in the long
run, are contingent upon degree completion, enrollment without completion is arguably an un-
desirable outcome, particularly if enrollment not only led to forgone earnings but also increased
student debt.

Table 3 reports the IPEDS results estimated using Equation (2). Column 1 to 3 report the
results for total college enrollment and separately for two-year and four-year colleges. The
estimates show that rising Chinese import competition increased total enrollment, with the effect
concentrated at two-year colleges. A one standard deviation increase in exposure to PNTR
increased total enrollment by 0.11 per capita, which translates to a modest 4 percent increase
relative to the sample mean. A similar-sized increase in PNTR raised two-year enrollment by
0.09 per capita, or a 7 percent increase. By contrast, the effect on enrollment at four-year
colleges is about half the size (0.04 per capita, or a 3 percent increase).28 The next three columns
report the results for college completion. The estimates range from -0.04 to 0.07 per capita, or
between -3 and 4 percent changes, but they are generally smaller and very imprecisely measured.

Figure 4 plots the estimated coefficients from the event study models. The graphs provide
visual evidence of the enrollment and completion effects documented in Table 3. First, none of
the event study graphs exhibits differential trends in schooling outcomes over the entire decade
prior to 2000. Second, Panel A and B, respectively, show clear upward trends in total and two-
year enrollment per capita after 2000. None of the other figures exhibits evidence of treatment
effects in either direction.

As public colleges subsidize in-state college enrollment with lower tuition fees, the skill ac-
quisition response may be larger at public colleges than at private colleges. If such differential
effects exist, then the capacity of public colleges to absorb the increase in demand for education
and provide financial support for large cohorts can significantly impact the size of the human
capital response (Bound and Turner 2007; Bound, Lovenheim, and Turner 2010). In Table 4, I
show that the positive two-year enrollment effect is concentrated at public colleges, especially
at two-year institutions, though I also observe a small and positive four-year enrollment effect.
By contrast, the results on private colleges are much smaller in magnitude and not statistically

28. In general, my enrollment estimates yield similar conclusions as Charles, Hurst, and Notowidigdo (2018). My
findings, as do theirs, suggest that the relationships between college enrollment and local employment opportunities
differ significantly by college institution level. In the Appendix, I also show that, like Charles, Hurst, and Notowidigdo
(2018), I fail to find any gender differentials in the college enrollment and college attainment effects.
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education investments, especially in the long run, are contingent upon degree completion, enrollment without 
completion is arguably an un- desirable outcome, particularly if enrollment not only led to forgone earnings but also 
increased student debt. 

Table 3 reports the IPEDS results estimated using Equation (2).

Column 1 to 3 report the results for total college enrollment and separately for two-year and 
four-year colleges. The estimates show that rising Chinese import competition increased total 
enrollment, with the effect concentrated at two-year colleges. A one standard deviation increase in 
exposure to PNTR increased total enrollment by 0.11 per capita, which translates to a modest 4 
percent increase relative to the sample mean. A similar-sized increase in PNTR raised two-year 
enrollment by 0.09 per capita, or a 7 percent increase. By contrast, the effect on enrollment at 
four-year colleges is about half the size (0.04 per capita, or a 3 percent increase).28

28. In general, my 
enrollment 
estimates yield 
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as Charles, Hurst, 
and Notowidigdo 
(2018).

My findings, as do theirs, suggest that the relationships between college enrollment and local employment opportunities differ significantly by college 
institution level. In the Appendix, I also show that, like Charles, Hurst, and Notowidigdo (2018),

I fail to find any gender differentials in the college enrollment and college attainment effects.

The next three columns report the results for college completion. The estimates range from -0.04 to 0.07 per capita, 
or between -3 and 4 percent changes, but they are generally smaller and very imprecisely measured.

Figure 4 plots the estimated coefficients from the event study models. The graphs provide evidence of the enrollment 
and completion effects documented in Table 3.

First, none of the event study graphs exhibits differential trends in schooling outcomes 
over the entire decade prior to 2000. Second, Panel A and B, respectively, show clear 
upward trends in total and two- year enrollment per capita after 2000. None of the other 
figures exhibits evidence of treatment effects in either direction.
As public colleges 
subsidize in-state college 
enrollment with lower 
tuition fees, the skill ac- 
quisition response may be 
larger at public colleges 
than at private colleges. If 
such differential effects 
exist, then the capacity of 
public colleges to absorb 
the increase in demand for 
education and provide 
financial support for large 
cohorts can significantly 
impact the size of the 
human capital response 
(Bound and Turner 2007)

Bound, 
Lovenheim, and 
Turner 2010).

In Table 4,

I show that the positive two-year enrollment effect is concentrated at public colleges, especially at two-year institutions, though I also observe 
a small and positive four-year enrollment effect. By contrast, the results on private colleges are much smaller in magnitude and not 
statistically significant.



significant.29 Lastly, even after separating by postsecondary sector, I still fail to find any statis-
tically significant or economically meaningful college attainment effects.

4.2 Are There Short-Term Gains from College Education?

Overall, my IPEDS results suggest that there was a statistically significant, albeit small, college
enrollment response to trade exposure. However, the lack of any completion effects makes it
unclear whether college attendance improved the labor market outcomes of young workers. To
answer this question, I again turn to the Census/ACS data. This time I examine the labor market
outcomes of 25–34 year-old college workers, that is, the age cohort of recent college graduates.
Their labor market outcomes arguably provide an estimate of the short-term gains to college
education.

In Table 5, I show that trade had strongly significant and negative effects on the employ-
ment and wages of young college workers, especially on college dropouts. I report the results
separately for college dropouts and college graduates (those with at least a bachelor’s degree)
separately. The estimates in Column 1 and 2 indicate that PNTR significantly lowered the
employment rates of young college dropouts and young college graduates by -0.72 and -0.44
percentage points, respectively. The next two columns show that young college workers had
significantly higher employment rates than their noncollege counterparts, with the employment
gap being smaller for college dropouts (0.53 percentage points) than for college graduates (0.81
percentage points), though the difference is not statistically distinguishable.

I also show that PNTR had negative effects on the college-noncollege wage gap for young
workers. Those negative results indicate that college attendance, especially without college de-
gree receipt, unlikely led to significant short-term wage gains. The estimates in Column 5 and
6, though not all consistently precisely measured, show that the negative effects on the college-
nocollege wage gaps were -0.67 and -0.23 percent for dropouts and graduates, respectively. The
negative effects on college premium go against the secular rise in returns to college degree re-
ceipt at the national level. Nevertheless, they are consistent with trade-induced displacements of
workers from the relatively high paying manufacturing jobs to the low paying low-skilled service

29. In Table B9 in the Appendix, I provide suggestive evidence that public institutions’ reliance on public funding
makes them vulnerable to economic shocks and compromises their ability to absorb trade-induced increases in demand
for college education. Because finance outcomes are less consistently observed than enrollment and completion in
IPEDS, to increase the precision of the estimates I restrict the sample to a balanced panel of institutions between
1990 and 2015 with nonmissing outcomes in the main finance categories: revenues from federal, state and local
sources, revenues from tuition, total education expenditures, and instruction expenditures. I find that there are negative
relationships between PNTR and public college funding, mostly driven by the declines in state and local funding. The
estimates on revenues from tuition and education and instruction expenditures are less precisely measured and either
close to null or slightly negative. The results in Table B9 are consistent with trade-induced declines in state and local
tax base as documented by Feler and Senses (2017).
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occupations, which led to a narrowing in the college-noncollege wage gap among young work-
ers in trade-exposed locales. They are also consistent with the stagnant job and wage growth
in areas that were most impacted by the China import shock, which created local economic
conditions akin to recessions (Autor, Dorn, and Hanson 2016).

In Table B3 in the Appendix, I perform additional analyses with the Census/ACS data to
validate my findings in this section. First, I find that the import shock increased the supply of
potential college-goers as measured by the percent of 18 to 19 population that is a high school
graduate.30 Next, I show that trade simultaneously increased the share of college dropouts and
decreased the share of college graduates among young people aged 25 to 34. These findings are
consistent with my IPEDS results. Lastly, I show that PNTR’s negative effects on college work-
ers wages and college premium remain quantitatively similar when estimated using earnings,
indicating that changes in workers’ labor supply are not driving my Census/ACS results.

5 Other Outcomes and Adult Economic Success

Deteriorating local economic conditions and the lack of educational adjustments by young
adults, at least in any economically meaningful way, create a puzzle. The findings naturally
lead to the consideration of young adults’ alternative pathways of trade adjustment. In the rest
of the paper, I employ the 1997 sample of the National Longitudinal Survey of Youth (NLSY97)
data to provide evidence for potential mechanisms.

5.1 NLSY97 Methodology

The econometric model in this section is similar to Equation (2), with some slight modifications.
The changes are necessary because of two important differences between the NLSY97 data and
the previous datasets. First, because NLSY97 respondents became of college age around the
time of the trade policy change and because I examine their long-term outcomes, the respon-
dents in my sample all eventually became exposed to PNTR during the sample period. Second,
a well-known weakness with the NLSY97 dataset is its small sample size. After restricting the
sample to respondents with nonmissing education, labor market, and summary index outcomes,
my NLSY97 sample consists of 6,772 respondents and covers approximately 20 percent of the
722 available CZs.31 The issue of the small sample size is exacerbated by the geographic con-

30. The estimated increase associated with a one standard deviation change in PNTR (0.35 percentage points) is
smaller than what Greenland and Lopresti (2016) found in their study. However, a direct comparison of the magnitude
is complicated by the different datasets and estimation methodologies used in the two studies, though the qualitative
conclusion remains similar.

31. That is, I keep the NLSY97 respondent if any of the individual components of a summary index is nonmissing.
Restricting the sample to only respondents without any missing outcomes decreases the sample size to N = 6,147; this
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of college age around the time of the trade policy change and because I examine their long-term 
outcomes, the respon- dents in my sample all eventually became exposed to PNTR during the 
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After restricting the sample to respondents with nonmissing education, labor market, and summary 
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The issue of the small sample size is exacerbated by the geographic con-centration of PNTR exposure and manufacturing intensity; in 
the NLSY97 data, the correlation coefficient between the two variables is over 0.77. Together, these data features raise concerns about 
low statistical power when I include both variables in the econometric model.



centration of PNTR exposure and manufacturing intensity; in the NLSY97 data, the correlation
coefficient between the two variables is over 0.77. Together, these data features raise concerns
about low statistical power when I include both variables in the econometric model.

My preferred approach for addressing the NLSY97 data issues is to relate the evolution
of workers’ outcomes to the cross-CZ variation in exposure to PNTR based on respondents’
place of residence in 1997. I use two methods to measure PNTR exposure. The first method
applies the continuous measure PNTRc as in the previous sections. The second method applies a
binary measure that indicates whether the respondent lived in a high PNTR CZ as measured by
whether the CZ is in the top third of PNTR distribution. Using the indicator variable increases
the precision of the estimates and addresses the possibility of low statistical power arising from
the high correlation between PNTRc and manufacturing intensity. As a robustness check, I also
estimate models using indicators for both the middle and top-third PNTR CZs. The results from
these regressions, which are discussed in the next section, indicate that the adverse effects of
trade are concentrated in the most exposed CZs. Guided by this finding, I prefer to use the top
tercile as my threshold, as opposed to alternative thresholds (e.g., the median), which would
attenuate the estimates.

Formally, the estimation equation is of the following form:

yicrt = α +β
NLSYExposurec +ζ

′Xc,1990 +δ
′Di +φrt + εicrt , (3)

where yicrt is an outcome of interest for respondent i in CZ c in region r at time t (year of age 30
survey round). Most of the outcomes are measured cumulatively or averaged annually from 2001
to the first survey round after respondents have turned 30. In some cases, I measure outcomes
between 2001 and age 25 and between ages 25 and 30. Compared to using cross-sectional data,
using the full history of information spanning over a decade arguably improves the measurement
of workers’ long-term behavior. The variable Exposurec is either the continuous or the binary
measure of PNTR exposure.

The vector Xct contains all the 1990 CZ characteristics from Equation (2). In addition to
the CZ covariates, I include an extensive set of individual baseline controls to adjust for cross-
individual differences in characteristics. The vector of individual controls Di includes indicators
for demographic information (e.g., age, sex, black, Hispanic), family structure (e.g., two-headed
household, single-father household, single-mother household, other household types), parents’
educational attainment (e.g., less than high school, high school, some college, college gradu-
ates, ungraded/missing), and mother’s age when the individual was born (e.g., 23 and younger,
between 24 and 28, 29 and older, missing). I also include controls for individuals’ household

sample restriction does not change my results significantly.
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income in 1996 and Armed Forces Qualification Test (AFQT) z-scores.32 In some of the ro-
bustness checks, I further control for baseline peer and school-related factors and young adults’
noncognitive skills. In instances in which control variables have missing values, I code the
values as zero and create indicator variables documenting the missing information. Finally, I
include region-by-year fixed effects (φrt).

The main identification assumption is that exposure to PNTR is exogenous conditional on
the vector of observables. Besides the extensive set of individual baseline controls, Equation (3),
as in the previous sections, includes CZs’ manufacturing intensity; thus, confounding economic
shocks to the manufacturing sector is not a big concern. Nevertheless, two threats to identi-
fication remain. One worry is potential selection on unobservables, such as unobserved skill
differentials that influence school behaviors. The second concern is the possibility of regional
economic shocks outside of manufacturing industries, such as the Great Recession. In the next
section, I present evidence showing that these factors are unlikely to be driving the results.33

5.2 Comparison with Census/ACS and IPEDS Results

Because of the differences in the samples and methodologies, I first validate my previous school-
ing and labor market results with the NLSY97 data in Table 6. Broadly, the NLSY97 results are
comparable to the Census/ACS and IPEDS results. Panel A of Table 6 reports the estimates
using the continuous measure of PNTR exposure; Panel B, the binary measure; Panel C, indi-
cators for middle-third and top-third PNTR CZs.34 The outcomes in the first four columns are
workers’ college enrollment and attainment by institution level; the outcomes in the last two
columns are workers’ hourly wages when not enrolled in school and whether they have ever
received unemployment insurance, a measure of worker displacement.35

Although the estimates in Column 1 to 4 of Panel A are somewhat noisy, they generally
indicate no significant skill acquisition responses, especially on the college attainment margin.
The implied effect on two-year college enrollment translates to a marginally significant 8 percent
increase relative to the sample mean, which is comparable to the implied effect of the IPEDS
estimate (a 7 percent increase). The other education estimates in Panel A are either null or noisy,

32. AFQT test scores approximate cognitive skills and have been widely used in the literature as a proxy for scholas-
tic ability (e.g., Cameron and Heckman 2001; Lovenheim and Reynolds 2011). AFQT is computed using standard
scores from four components: arithmetic reasoning, mathematics, knowledge, paragraph comprehension, and word
knowledge. The tests are designed to help “predict future academic and occupational success in the military.” See
http://official-asvab.com/index.htm for details.

33. As mentioned earlier, I do not have unexposed NLSY97 cohorts and thus cannot estimate event study models.
34. The standard deviation of the PNTR variable in the NLSY97 is 3.28 percentage points.
35. I use the receipt of unemployment insurance as a measure of unemployment because NLSY97 only reported

the labor force status of the respondents based on the Current Population Survey questions for years 1997, 2000, and
2006.
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similar to the IPEDS findings. The estimates in the next two columns, though also imprecisely
measured, show that PNTR had negative labor market effects.

Turning to Panel B, the estimates are generally qualitatively similar to those in Panel A,
showing no attainment effects and strong negative labor market effects. One exception is the
finding associated with two-year college enrollment (Column 1), in which the Panel A and
Panel B coefficients differ in sign. Heterogeneous enrollment effects across the PNTR distri-
bution provide a possible explanation. In Panel C of Table 6, I test this hypothesis by using a
more flexible econometric specification that allows for differential effects. I find that the two-
year college enrollment effect is larger for young adults who lived in the middle-third PNTR
CZs (3.24 percentage points, t = 2.02) than those who lived in the top third (1.09 percentage
points, t = 0.45), though the difference is not statistically distinguishable. Further, the estimates
in Column 5 and 6 of Panel C show that the adverse labor market effects of trade are concen-
trated in most PNTR-exposed CZs. Severe economic deterioration in those local labor markets
could have created negative social and fiscal spillovers that impeded educational adjustments.
Nonetheless, even with this more flexible specification, for the most part, I cannot reject that
the high PNTR CZ estimates in Panel C are statistically different from the implied effects of the
Panel A estimates or the Panel B estimates.

Table B10 in the Appendix reports the results from several robustness checks. The results
are generally quite similar to my preferred estimates.36 For ease of comparison, Panel A of
Table B10 reports my preferred estimates from the main article. In Panel B of the same table, I
additionally control for several skill measures and contextual variables. Skill measures, which
include social and noncognitive skills, act as proxies for individual-level unobservables.37 Con-
textual variables, which include measures of peer and school factors in 1997, serve as proxies for
unobserved youth environmental factors that influence schooling and employment decisions.38

Research has shown the significant positive associations between these variables and academic
and labor market performance (Heckman, Stixrud, and Urzua 2006; Chetty et al. 2011; Dem-
ing 2017). In Panel C of Table B10, I exclude individual baseline controls from the regressions.

36. To save space, I only report the results for the binary PNTR measure. I have also checked the robustness of the
continuous PNTR measure. The robustness results are very similar to the estimates in Panel A of Table 6.

37. The definition of these skills follow Deming (2017). Social skills average extroversion and reservedness.
Noncognitive skills are measured using seven personality trait measures: disorganized, conscientious, undependable,
thorough, trusting, disciplined, and careless. Some z-scores (disorganized, undependable, carless) are rescaled such
that higher values indicate more desirable personality traits.

38. The peer summary index averages the z-scores of the percent of school peers who participate in church go-
ing, smoking, getting drunk, sports, gang, volunteering, using drugs, and skipping class, and those who plan to go
to college. The school summary index averages the z-scores of school-related characteristics (frequency of having
something stolen; frequency of being threatened; frequency of being in fights; frequency of being late without an
excuse; frequency of being absent) and respondents’ attitude toward school (“teacher is good,” “teacher is interested
in students,” “students disrupt learning,” “grade is fair,” “students cheat on homework,” “discipline is fair,” “feels safe
in school”). As before, the z-scores of negative school characteristics and respondent attitudes are multiplied by -1.
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This exclusion tests the significance of demographic and household characteristics in driving the
results. Even with a battery of tests, I fail to find any evidence of significant changes in the re-
sults. In Panel D and E of Table B10, I test for the existence of confounding economic shocks by
separately controlling for the CZ unemployment rate at age 19, the modal age for high school
degree receipt, and CZ exposure to the housing boom.39 Again, I fail to find any significant
changes in the estimates. For confounders to significantly bias my results, they would have to be
uncorrelated with the rich set of observables, several proxies for individual and environmental
unobservables, local unemployment rate when youths first became of college-age, and one of
the largest economic shocks during the sample period, and yet spatially correlated with youths’
place of residence in 1997. Although spurious correlation remains possible, the evidence from
the robustness checks suggests that this is unlikely.

Lastly, I present further evidence of trade’s effects on workers’ transition from school to
work by relating PNTR to the timing of schooling and employment choices. I separate the
young adults’ outcomes into two sub-periods: from 2001 to age 25 and after age 25. The first
sub-period approximates the period of on-time college attendance; the second sub-period, the
early-career employment of recent college graduates. Because the returns to human capital
investment compound over time, and adjustment frictions increase with age, enrollment during
the on-time college attendance period is arguably a more desirable outcome. On the contrary, I
find that exposure to rising trade pressures from China is associated with “delayed” college and
earlier onset of adverse economic outcomes. The results in Table B11 in the Appendix show
that PNTR exposure is linked to adverse schooling and labor market outcomes between 2001
and age 25, including being less likely to have enrolled at four-year colleges, had lower wages,
and being more likely to have received unemployment insurance. The results also show that the
same workers were more likely to have enrolled at two-year colleges after 25. The findings,
though not consistently precisely estimated, provide supportive evidence for the claim that the
trade shock was a lever for raising college enrollment, though not college attainment.

5.3 Worker Mobility and Cumulative Exposure to Trade

Such significant geographic disparities in young people’s prospects and educational trajectories
suggest the existence of substantial geographic and labor market frictions. Table 7 assesses this
possibility by studying workers’ cumulative exposure to PNTR across multiple dimensions. The
outcomes are standardized summary indices multiplied by 100. As such, the coefficients can be
interpreted as percentage changes relative to the standard deviation (which is one by design).

39. Analogous to Charles, Hurst, and Notowidigdo (2018), I use structural breaks in housing prices to provide an
exogenous measure of the effect of housing boom. Structural breaks in CZ housing prices are made publicly available
by Greenland, Lopresti, and McHenry (2018).
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Larger positive values indicate “better” outcomes. Total mobility summary index combines mo-
bility at the geographic and industry levels, i.e., the labor market adjustment channels associated
with trade. The results for the individual components of the summary indices are reported in the
Appendix. Compared to the summary indices, the effects of PNTR on the individual components
are less precise but generally have a similar interpretation.

Absent any significant geographic or sectoral frictions, as assumed in many standard long-
run models of trade, I am unlikely to find any meaningful relationships between the China import
shock and young people’s cumulative exposure. On the contrary, I consistently find that the
import shock had large and significant negative impacts on worker mobility. The estimates in
Column 1 of Table 7 show that youth exposure to PNTR was strongly associated with less total
mobility and higher cumulative exposure from 2001 to age 30, with implied effects ranging
between -29.19 and -33.29 percent changes relative to the standard deviation.

The estimates in Column 2 to 4 indicate that the large cumulative trade exposure mostly
stems from the significant geographic and industry-level frictions, especially the former. The
implied effects of PNTR on geographic mobility are between -28.56 to -35.33 percent changes
relative to the standard deviation. In addition, Column 3 shows that trade-exposed young adults
were significantly less likely to have ever left their 1997 county of residence by age 30 (a change
of -3.60 to -4.85 percentage points).40 The estimates in Column 4 indicate that the effect of
PNTR on industry mobility was smaller but still significant and ranged between -13.58 and
-14.31 percent relative to the standard deviation.

The estimates in Column 5 show that PNTR also negatively affected the skill content of
young people’s employment between 2001 and age 30. Although the implied effects are nega-
tive, they are much smaller (between -2.79 and -5.41 percent) and less precisely measured. The
negative coefficients suggest that young adults were much less likely to be employed in math-
skill and social-skill intensive occupations. Rather, they were more likely to be employed in
routine-intensive occupations that had become susceptible to technology shocks and offshoring.
The smaller magnitude of the coefficients in Column 5 compared to the coefficients in Column
2 is consistent with the industry-level concentration of trade shocks, which pervade occupation
and skill levels (Autor, Dorn, and Hanson 2015). The evidence is also consistent with employ-
ment losses in the manufacturing sector, particularly after 2000, being increasingly concentrated
in plant closures (Holmes and Stevens 2014; Asquith et al. 2019), making the impacts of trade
industry-specific rather than occupation-specific.

40. I also find that the low geographic mobility in trade-exposed regions extends to cross-CZ and cross-state moves,
though those estimates are less precisely measured (see Table B12). The imprecision of those estimates reflect the
mixed evidence on the effect of Chinese import competition on population adjustments.
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making the impacts of trade industry-specific rather than occupation-specific.



5.4 Risky Behaviors, Life Events, and Adult Economic Success

Without significant population adjustments or increases in the local human capital stock, trade-
affected communities likely experienced a persistent deterioration in local economic conditions
and a steady rise in long-term unemployment and joblessness.

I show that, faced with the bleak economic circumstances, young adults adopted unappealing
adjustment mechanisms, including engaging in crime and risky health behaviors. The partici-
pation in those activities not only were unlikely to improve young adults’ current labor market
outcomes but also likely had scarring effects on their prospects for employment. The estimates
in Table 8 indicate that PNTR’s effects on criminal activities (Column 1) and risky health behav-
iors (Column 2 and 3) were as large as -11.20 percent and -12.22 percent relative to the standard
deviation, respectively. The coefficients on the individual components confirm these findings.
In Table B13, I show that trade significantly raised the incidence of youth arrests, incarceration,
and joblessness from incapacitation. I also find strong effects of PNTR on intensive alcohol con-
sumption and illegal drug use, including consumption of such substances before/during school
and work (see Table B14). The link between PNTR and other risky health behaviors, such as
cigarette smoking and marijuana use, is less strong. This evidence is consistent with that of
Pierce and Schott (2016b), who find that PNTR is generally positively associated with increases
in alcohol and drug-related mortality.

The findings on young adults’ risky behaviors starkly contrast with their life event outcomes.
In Column 4 of Table 8, I fail to find any evidence of significant family-related adjustment
frictions, such as an increase in childrearing responsibilities as college goers. Table B15 in the
Appendix also presents evidence to suggest that family-related responsibilities likely played a
less significant role in young adults’ slow skill acquisition and persistent joblessness.41 The
imprecision of my estimates may reflect the countervailing effects of the China import shock
on marriage, maternity, and fertility. In particular, Autor, Dorn, and Hanson (2017) show that
a negative shock to the market value of men deterred family formation and fertility for women
aged 18 to 39, whereas a negative shock to women’s own labor market outcomes had the opposite
effect.

Lastly, from a policy perspective, we are interested in how trade impacts the long-term eco-
nomic success of young adults. Whether they can find jobs and become self-sufficient adults has
significant implications for both the duration and intensity of young adults’ reliance on public
assistance. Persistent jobless among young people also leads to sustained declines in state and
local funding for public goods and services, such as public education, which can further stunt
the educational growth of future generations of workers. In the final column of Table 8, I present

41. I have also examined whether teen pregnancy played a role by examining the relationship between PNTR expo-
sure and mothers’ age at the birth of first child. The result did not support this explanation.
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direct evidence on the potential long-term effects of trade by examining NLSY97 respondents’
economic success at early adulthood. I assume that early adult economic success at age 30 is
a good predictor of future economic success. This assumption is supported by the empirical
evidence that shows income ranks within cohorts stabilize around age 30 and thus unlikely to
suffer from lifecycle bias (Chetty et al. 2014). Further, the China import shock had largely dis-
appeared by the early 2010s when the outcomes are measured. Therefore, assuming workers’
earnings trajectories continue on the same paths over the next thirty or forty years until retire-
ment, the estimates in Column 4 of Table 8 show that exposure to the import shock strongly
reduced young people’s chances of future economic success, even more than a decade after the
trade policy change. The implied impacts range between -4.26 and -6.43 percent relative to the
standard deviation, though not all consistently precisely measured. Together, the results in this
section suggest that the geographic disparities in economic opportunity and economic mobility
will continue to diverge and the disruption effects of trade liberalization may be more enduring
than commonly recognized in the literature.

6 Conclusion

As the transformation to a service economy accelerates, low-skilled workers in the United States
must adjust to the rapid changes in labor demand or risk being left behind. Evidence suggests
that large frictions in the labor market have prevented the smooth employment transitions of
displaced workers and contributed to almost a decade of anemic employment growth at the turn
of this century. The impetus for this paper is to examine whether young adults, who have more
margins of adjustment than older workers, are able to acquire new skills and respond to these
changes.

By examining a wide array of outcomes—ranging from college attainment to risky behaviors
to life events—I find robust evidence to suggest that various non-labor market frictions likely
prolonged the slow skill acquisition response of young workers and amplified the negative labor
market effects of trade. In particular, I show that while it induced young people to attend col-
lege, rising import competition failed to raise educational attainment. Further, I find that youth
exposure to trade not only lowered worker mobility across multiple dimensions but also led to
a number of detrimental risky behavioral outcomes. Lastly, I show that trade-exposed work-
ers’ future economic success is expected to change by -4.26 to -6.43 percent over the next few
decades, widening the current geographic disparities in economic outcomes.

The implications of my findings raise concerns over not only the regressive distributional
consequences of rapid trade liberalization but also their durability and possible transmission
across generations. To effectively address the trade-induced regional divergence in economic
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opportunity and to raise upward economic mobility, my results suggest that policymakers must
consider a broad range of noneconomic factors, in addition to the income maintenance of trade-
affected workers. Those factors include the significance of non-labor market frictions and the
potential declines in funding and student resources at public schools and colleges. My results
also indicate that trade adjustment policies, which currently target trade-affected workers and
firms, could target distressed communities as a whole; in particular, the policies could expand
coverage to include young people who are not directly impacted by trade. But perhaps more
important, as my findings suggest that even college-aged youths struggled to adjust to the rapid
changes in labor demand, trade adjustment policies could also include programs that invest in
the early human capital development of young children in distressed communities. These are
important avenues for future research.
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FIGURE 1. Relationship Between U.S. Imports from China and U.S. Manufacturing Employment,
1990–2015

Source: Author’s calculations from the U.S. Census and Burea of Labor Statistics Data.
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FIGURE 1. Relationship Between U.S. Imports from China and U.S. Manufacturing Employment, 
1990–2015 

Source: Author’s calculations from the U.S. Census and Burea of Labor Statistics Data. 
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FIGURE 2. Geographic Distribution of PNTR Exposure. 

Source: Author’s calculations from the 1990 County Business Patterns and the Pierce and Schott (2016a)

NTR Gaps.
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Source: Author’s calculations from the 1990 to 2015 Bureau of Labor Statistics, Local Area Un- 
employment, and Quarterly Census of Employment and Wages Data. 
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Source: Author’s calculations from the 1990 to 2015 Integrated Postsecondary Eduaction System 
Data. 



TABLE 1. Effect of PNTR on Commuting Zone Employment, BLS Data, 1990–2015

Dependent variable:
employment and
labor force participation

Log total
employment

(1)

Log mfg
employment

(2)

Log nmfg
employment

(3)

Log
unemp.

(4)

Unemp.
rate
(5)

Labor force-
to-pop. ratio

(6)

PNTR × Post -1.58*** -2.35*** -0.38 0.89** 0.15*** -0.19**
(0.24) (0.62) (0.23) (0.41) (0.02) (0.09)
[-4.38] [-6.53] [-1.05] [2.46] [0.42] [-0.52]

R2 1.00 1.00 1.00 0.99 0.89 0.89
Mean dep. var. 1315.74 1110.48 1299.28 1064.84 6.15 80.50
Observations 18726 17742 18726 18726 18726 18726

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates in-
cludes interactions of the post-2001 dummy with several 1990 CZ characteristics: log population; share
of the population employed in manufacturing; share of the female population in the labor force; share of
the population without a college degree; share of the population that is black, Asian, and of other races
(Native American and Pacific Islander); share of population that is foreign-born; and average household
income. All regressions include commuting zone and region-by-year fixed effects. Robust standard er-
rors are clustered at the CZ level. Brackets include the implied effect of a one standard deviation increase
in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE 1. Effect of PNTR on Commuting Zone Employment, BLS Data, 1990–2015 

Dependent variable: employment 
and labor force participation 

Log total 
employment (1) 

Log mfg 
employment (2) 

Log nmfg 
employment (3) 

Log unemp. 
(4) 

Unemp. rate 
(5) 

Labor force- 
to-pop. ratio (6) 

PNTR × Post -1.58*** -2.35*** -0.38 0.89** 0.15*** -0.19**

(0.24) (0.62) (0.23) (0.41) (0.02) (0.09) 

[-4.38] [-6.53] [-1.05] [2.46] [0.42] [-0.52] 

R2 1.00 1.00 1.00 0.99 0.89 0.89 
Mean dep. var. 1315.74 1110.48 1299.28 1064.84 6.15 80.50 

Observations 18726 17742 18726 18726 18726 18726 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates in- cludes 
interactions of the post-2001 dummy with several 1990 CZ characteristics: log population; share of the population 
employed in manufacturing; share of the female population in the labor force; share of the population without a college 
degree; share of the population that is black, Asian, and of other races (Native American and Pacific Islander); share 
of population that is foreign-born; and average household income. All regressions include commuting zone and 
region-by-year fixed effects. Robust standard er- rors are clustered at the CZ level. Brackets include the implied effect 
of a one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 
percent, and *** at 1 percent. 



TABLE 2. Labor Market Effects of PNTR on Noncollege Workers, Census/ACS Data, 1990, 2000, 2005–
2015

Dependent variable:
employment rate
and weekly wages of
noncollege worker
aged 18–34 and 35–54

Percent
noncollege
pop. that is
employed,
aged 18–34

(1)

Noncollege
avg. log
weekly
wages,

aged 18–34
(2)

Percent
noncollege
pop. that is
employed,
aged 35–54

(3)

Noncollege
avg. log
weekly
wages,

aged 35–54
(4)

College-
noncollege

employment
gap,

aged 35–54
(5)

College-
noncollege

weekly
wage gap,

aged 35–54
(6)

PNTR × Post -0.49*** -0.72*** -0.40*** -0.75*** 0.12** -0.03
(0.07) (0.14) (0.06) (0.14) (0.05) (0.09)
[-1.38] [-2.00] [-1.11] [-2.09] [0.33] [-0.09]

R2 0.84 0.80 0.82 0.85 0.58 0.64
Mean dep. var. 59.77 593.73 68.90 647.61 14.84 41.14

Note: N = 9386. All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ co-
variates are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year
fixed effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a
one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5
percent, and *** at 1 percent.
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TABLE 2. Labor Market Effects of PNTR on Noncollege Workers, Census/ACS Data, 1990, 2000, 
2005– 2015 
Dependent variable: 
employment rate and weekly 
wages of noncollege worker 
aged 18–34 and 35–54 

Percent 
noncollege pop. 
that is employed, 
aged 18–34 (1) 

Noncollege avg. 
log weekly 
wages, aged 
18–34 (2) 

Percent 
noncollege pop. 
that is employed, 
aged 35–54 (3) 

Noncollege avg. 
log weekly 
wages, aged 
35–54 (4) 

College- 
noncollege 
employment gap, 
aged 35–54 (5) 

College- 
noncollege weekly 
wage gap, aged 
35–54 (6) 

PNTR × Post -0.49*** -0.72*** -0.40*** -0.75*** 0.12** -0.03

(0.07) (0.14) (0.06) (0.14) (0.05) (0.09) 

[-1.38] [-2.00] [-1.11] [-2.09] [0.33] [-0.09] 
R2 0.84 0.80 0.82 0.85 0.58 0.64 
Mean dep. var. 59.77 593.73 68.90 647.61 14.84 41.14 

Note: N= 9386. All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ co- variates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE 3. Effect of PNTR on College Enrollment and Attainment, IPEDS Data, 1990–2015

Dependent variable:
college enrollment and
completion per capita

Total
enrollment

(1)

Two-year
enrollment

(2)

Four-year
enrollment

(3)

Total
completion

(4)

Two-year
completion

(5)

Four-year
completion

(6)

PNTR × Post 0.04*** 0.03*** 0.01 0.01 0.02 -0.01
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
[0.11] [0.09] [0.04] [0.04] [0.07] [-0.04]

R2 0.85 0.67 0.92 0.73 0.64 0.76
Mean dep. var. 2.51 1.36 1.23 3.11 1.73 1.48
Observations 15145 14001 10561 15072 13860 10688

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates
are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed
effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a
one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, **
at 5 percent, and *** at 1 percent.
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TABLE 3. Effect of PNTR on College Enrollment and Attainment, IPEDS Data, 1990–2015 

Dependent variable: college 
enrollment and completion per 
capita 

Total enrollment 
(1) 

Two-year 
enrollment (2) 

Four-year 
enrollment (3) 

Total completion 
(4) 

Two-year 
completion (5) 

Four-year 
completion (6) 

PNTR × Post 0.04*** 0.03*** 0.01 0.01 0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) 

[0.11] [0.09] [0.04] [0.04] [0.07] [-0.04] 
R2 0.85 0.67 0.92 0.73 0.64 0.76 

Mean dep. var. 2.51 1.36 1.23 3.11 1.73 1.48 

Observations 15145 14001 10561 15072 13860 10688 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are 
clustered at the CZ level. Brackets include the implied effect of a one standard deviation increase in 
exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE 4. College Enrollment and Attainment Effects of PNTR by Postsecondary Sector, IPEDS Data,
1990–2015

Dependent variable:
college enrollment and
completion per capita
by institution sector

Total
enrollment

(1)

Two-year
enrollment

(2)

Four-year
enrollment

(3)

Total
completion

(4)

Two-year
completion

(5)

Four-year
completion

(6)

Panel A. Public colleges
PNTR × Post 0.04*** 0.03*** 0.02** 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01)
[0.10] [0.08] [0.05] [0.02] [0.03] [0.02]

R2 0.88 0.71 0.96 0.82 0.69 0.95
Mean dep. var. 1.75 1.00 0.91 2.09 1.24 1.03
Observations 14012 12805 7430 13959 12700 7494
Panel B. Private colleges
PNTR × Post 0.01 0.01 0.01 0.01 0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01)
[0.03] [0.02] [0.02] [0.02] [0.05] [-0.04]

R2 0.76 0.66 0.77 0.55 0.51 0.49
Mean dep. var. 0.81 0.41 0.46 1.09 0.55 0.62
Observations 11055 9430 7642 10821 9073 7753

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates
are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed
effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a one
standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5
percent, and *** at 1 percent.

39

TABLE 4. College Enrollment and Attainment Effects of PNTR by Postsecondary Sector, IPEDS 
Data, 1990–2015 

Dependent variable: college 
enrollment and completion per 
capita by institution sector 

Total enrollment 
(1) 

Two-year 
enrollment (2) 

Four-year 
enrollment (3) 

Total completion 
(4) 

Two-year 
completion (5) 

Four-year 
completion (6) 

Panel A. Public colleges

PNTR × Post 0.04*** 0.03*** 0.02** 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

[0.10] [0.08] [0.05] [0.02] [0.03] [0.02] 
R2 0.88 0.71 0.96 0.82 0.69 0.95 

Mean dep. var. 1.75 1.00 0.91 2.09 1.24 1.03 

Observations 14012 12805 7430 13959 12700 7494 
Panel B. Private colleges 
PNTR × Post 0.01 0.01 0.01 0.01 0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

[0.03] [0.02] [0.02] [0.02] [0.05] [-0.04] 
R2 0.76 0.66 0.77 0.55 0.51 0.49 

Mean dep. var. 0.81 0.41 0.46 1.09 0.55 0.62 

Observations 11055 9430 7642 10821 9073 7753 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE 5. Effect of PNTR on the Employment, Weekly Wages, and College Premium of College
Workers Aged 25–34, Census/ACS Data, 1990, 2000, 2005–2015

Dependent variable:
employment rate,
weekly wages, and
college premium of
college workers
aged 25–34

Percent
college
dropout
that is

employed
(1)

Percent
college

graduate
that is

employed
(2)

College
dropout-

noncollege
employment

gap
(3)

College
graduate-

noncollege
employment

gap
(4)

College
dropout-

noncollege
weekly

wage gap
(5)

College
graduate-

noncollege
weekly

wage gap
(6)

PNTR × Post -0.26*** -0.16*** 0.19*** 0.29*** -0.24* -0.08
(0.06) (0.05) (0.07) (0.07) (0.13) (0.18)
[-0.72] [-0.44] [0.53] [0.81] [-0.67] [-0.23]

R2 0.57 0.35 0.29 0.51 0.20 0.46
Mean dep. var. 79.83 88.71 12.64 21.52 15.57 52.31
Observations 9386 9382 9386 9382 9386 9381

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covari-
ates are defined at the bottom of Table 1. All regressions include commuting zone and region-by-
year fixed effects. Robust standard errors are clustered at the CZ level. Brackets include the implied
effect of a one standard deviation increase in exposure to PNTR. Significance level is denoted * at
10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE 5. Effect of PNTR on the Employment, Weekly Wages, and College Premium of College Workers Aged 25–34, 
Census/ACS Data, 1990, 2000, 2005–2015 

Dependent variable: 
employment rate, weekly 
wages, and college premium 
of college workers aged 
25–34 

Percent college 
dropout that is 
employed (1) 

Percent college 
graduate that is 
employed (2) 

College dropout- 
noncollege 
employment gap 
(3) 

College graduate- 
noncollege 
employment gap 
(4) 

College dropout- 
noncollege 
weekly wage gap 
(5) 

College graduate- 
noncollege 
weekly wage gap 
(6) 

PNTR × Post -0.26*** -0.16*** 0.19*** 0.29*** -0.24* -0.08

(0.06) (0.05) (0.07) (0.07) (0.13) (0.18) 

[-0.72] [-0.44] [0.53] [0.81] [-0.67] [-0.23] 

R2 0.57 0.35 0.29 0.51 0.20 0.46 

Mean dep. var. 79.83 88.71 12.64 21.52 15.57 52.31 

Observations 9386 9382 9386 9382 9386 9381 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covari- ates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by- year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent. .



TABLE 6. Effect of PNTR on Schooling and Labor Market Outcomes, NLSY97 Data

Dependent variable:
college attainment,
mean hourly wages,
and UI receipt from
2001 to age 30

Has
enrolled
at 2-year
colleges

(1)

Has
enrolled
at 4-year
colleges

(2)

Has
received

associate’s
degree

(3)

Has
received

bachelor’s
degree

(4)

Hourly
wages,
not in
school

(5)

Has
received
unemp.

insurance
(6)

Panel A. Continuous PNTR
PNTR 0.69* -0.43 0.41 0.12 -0.09 0.38

(0.41) (0.32) (0.28) (0.26) (0.07) (0.47)
[2.26] [-1.41] [1.34] [0.39] [-0.30] [1.25]

R2 0.04 0.32 0.02 0.32 0.11 0.04
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 -1.09 -0.71 -1.11 1.64 -0.76** 4.55**

(2.34) (1.60) (1.31) (1.46) (0.37) (2.17)
R2 0.04 0.32 0.02 0.32 0.11 0.04
Panel C. PNTR terciles
Lived in high PNTR CZs in 1997 1.09 -4.13** -1.67 -0.11 -1.02** 5.91***

(2.42) (1.86) (1.46) (1.49) (0.42) (2.26)
Lived in middle PNTR CZs in 1997 3.24** -5.11*** -0.80 -2.63 -0.38 2.16

(1.61) (1.79) (1.10) (1.62) (0.36) (1.68)
R2 0.04 0.33 0.02 0.33 0.11 0.05
Mean dep. var. 28.36 42.00 11.15 29.27 17.32 27.05

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by
NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Individual
baseline covariates include demographic information, family background, household structure, house-
hold income, and AFTQ scores as defined in the main article. All regressions include region-by-year
fixed effects. Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10
percent, ** at 5 percent, and *** at 1 percent.
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TABLE 6. Effect of PNTR on Schooling and Labor Market Outcomes, NLSY97 Data 

Dependent variable: college attainment, mean 
hourly wages, and UI receipt from 2001 to age 
30 

Has enrolled 
at 2-year 
colleges (1) 

Has enrolled 
at 4-year 
colleges (2) 

Has received 
associate’s 
degree (3) 

Has received 
bachelor’s 
degree (4) 

Hourly 
wages, not 
in school (5) 

Has received 
unemp. 
insurance (6) 

Panel A. Continuous PNTR 

PNTR 0.69* -0.43 0.41 0.12 -0.09 0.38

(0.41) (0.32) (0.28) (0.26) (0.07) (0.47) 
[2.26] [-1.41] [1.34] [0.39] [-0.30] [1.25] 

R2 0.04 0.32 0.02 0.32 0.11 0.04 
Panel B. Binary PNTR 
Lived in high PNTR CZs in 1997 -1.09 -0.71 -1.11 1.64 -0.76** 4.55**

(2.34) (1.60) (1.31) (1.46) (0.37) (2.17) 

R2 0.04 0.32 0.02 0.32 0.11 0.04 

Panel C. PNTR terciles Lived in high PNTR CZs in 1997 

Lived in high PNTR CZs in 1997 1.09 -4.13** -1.67 -0.11 -1.02** 5.91***

(2.42) (1.86) (1.46) (1.49) (0.42) (2.26)

Lived in middle PNTR CZs in 1997 3.24** -5.11*** -0.80 -2.63 -0.38 2.16
(1.61) (1.79) (1.10) (1.62) (0.36) (1.68) 

R2 0.04 0.33 0.02 0.33 0.11 0.05 

Mean dep. var. 28.36 42.00 11.15 29.27 17.32 27.05 

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the 
bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, house- hold 
income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed effects. Robust 
standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 
1 percent.



TABLE 7. Relationships Between PNTR and Mean Exposure, NLSY97 Data

Dependent variable:
summary index z-score
of geographic, industry,
and occupation exposure
from 2001 to age 30

100 ×
Total

exposure
index

z-score
(1)

100 ×
CZ

exposure
index

z-score
(2)

Has
moved
out of
county

(3)

100 ×
Industry
exposure

index
z-score

(4)

100 ×
Occupation

exposure
index

z-score
(5)

Panel A. Continuous PNTR
PNTR -10.15*** -10.77*** -1.48*** -4.14*** -0.85

(0.97) (0.92) (0.54) (0.88) (0.61)
[-33.29] [-35.33] [-4.85] [-13.58] [-2.79]

R2 0.19 0.21 0.09 0.07 0.25
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 -29.19*** -28.56*** -3.60 -14.31*** -5.41*

(6.09) (5.47) (2.45) (5.16) (3.25)
R2 0.17 0.18 0.09 0.07 0.25
Mean dep. var. 0.00 0.00 66.92 0.00 0.00

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by
NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Indi-
vidual baseline covariates include demographic information, family background, household structure,
household income, and AFTQ scores as defined in the main article. All regressions include region-by-
year fixed effects. Robust standard errors are clustered at the CZ level. Significance level is denoted *
at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE 7. Relationships Between PNTR and Mean Exposure, NLSY97 Data 

Dependent variable: summary index z-score of 
geographic, industry, and occupation exposure from 
2001 to age 30 

100 × Total 
exposure index 
z-score (1) 

100 × CZ 
exposure index 
z-score (2) 

Has moved 
out of county 
(3) 

100 × Industry 
exposure index 
z-score (4) 

100 × Occupation 
exposure index 
z-score (5) 

Panel A. Continuous PNTR 

PNTR -10.15*** -10.77*** -1.48*** -4.14*** -0.85

(0.97) (0.92) (0.54) (0.88) (0.61) 

[-33.29] [-35.33] [-4.85] [-13.58] [-2.79] 
R2 0.19 0.21 0.09 0.07 0.25 

Panel B. Binary PNTR 

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the 
bottom of Table 1.

Indi- vidual baseline covariates include demographic information, family background, household structure, household 
income, and AFTQ scores as defined in the main article. All regressions include region-by- year fixed effects. Robust 
standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 
1 percent.



TABLE 8. Effect of PNTR on Risky Behaviors, Life Events, and Adult Economic Success, NLSY97
Data

Dependent variable:
summary index z-score of
risky behavior outcomes,
life event outcomes and,
adult economic success
from 2001 to age 30

100 ×
Criminal
behavior

index
z-score

(1)

100 ×
Risky
health

behavior
index

z-score
(2)

100 ×
Life
event
index

z-score
(3)

100 ×
Adult

economic
success
index

z-score
(4)

Panel A. Continuous PNTR
PNTR -0.69 -2.24*** 0.05 -1.96**

(0.89) (0.80) (0.73) (0.80)
[-2.26] [-7.35] [0.16] [-6.43]

R2 0.12 0.04 0.17 0.19
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 -11.20*** -12.22*** -2.97 -4.26

(3.98) (3.66) (3.51) (5.85)
R2 0.13 0.04 0.17 0.19
Mean dep. var. 0.00 0.00 0.00 0.00

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted
by NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table
1. Individual baseline covariates include demographic information, family background, household
structure, household income, and AFTQ scores as defined in the main article. All regressions in-
clude region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Signifi-
cance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE 8. Effect of PNTR on Risky Behaviors, Life Events, and Adult Economic Success, NLSY97 Data 

Dependent variable: summary index z-score of risky 
behavior outcomes, life event outcomes and, adult 
economic success from 2001 to age 30 

100 × Criminal 
behavior index z-score 
(1) 

100 × Risky health 
behavior index 
z-score (2) 

100 × Life event 
index z-score (3) 

100 × Adult 
economic success 
index z-score (4) 

Panel A. Continuous PNTR 

PNTR -0.69 -2.24*** 0.05 -1.96** 
(0.89) (0.80) (0.73) (0.80) 

[-2.26] [-7.35] [0.16] [-6.43] 

R2 0.12 0.04 0.17 0.19 
Panel B. Binary PNTR 

Lived in high PNTR CZs in 1997 -11.20*** -12.22*** -2.97 -4.26 

(3.98) (3.66) (3.51) (5.85) 

R2 0.13 0.04 0.17 0.19 

Mean dep. var. 0.00 0.00 0.00 0.00 

Note: N= 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling 
weights. The vector of CZ covariates are defined at the bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, household income, and AFTQ 
scores as defined in the main article. All regressions in- clude region-by-year fixed effects. Robust standard errors are clustered at the CZ 
level. Signifi- cance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



Online Appendix for “Short-Term and Long-Term Effects of Trade

Liberalization” by Gary C. Lin

A Data and Measurement

TABLE A1. Data Sources, Sample Periods, and Variables

Data Sources Sample Outcomes

Panel A. Main Outcomes
Integrated Postsecondary Education Data System 1990–2015 College enrollment; college comple-

tion
Census/American Community Survey 1990, 2000,

2005–2015
Employment and earnings by educa-
tional attainment and age group

National Longitudinal Survey of Youth 1997 1997–2011,
2013, 2015

College attainment; employment and
wages; marriage and fertility; crimi-
nal behavior; risky health behaviors;
mobility (geographic, industry, occu-
pation); asset and home ownership

Panel B. Supplemental Outcomes
100 Percent Sample Census 1990 Population; share of the population

employed in manufacturing; share of
the female population in the labor
force; share of the population without
a college degree; share of the popula-
tion that is black, Asian, and of other
races (Native American and Pacific
Islander); share of population that is
foreign-born; average household in-
come

Quarterly Census of Employment and Wages 1990–2015 Employment counts
Local Area Unemployment 1990–2015 Unemployment rate; unemployment

counts; labor force population counts
County Business Patterns 1990 Employment counts by industry
Surveillance, Epidemiology, and End Results 1990–2015 Population counts (aged 18–34, aged

18–24)
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Online Appendix for “Short-Term and Long-Term Effects 
of Trade Liberalization” by Gary C. Lin 

A Data and Measurement 

TABLE A1. Data Sources, Sample Periods, and Variables 

Data Sources Sample Outcomes 

Panel A. Main Outcomes

Integrated Postsecondary Education Data System 1990–2015 College enrollment; college completion

Census/American Community Survey 1990, 2000, 
2005–2015 

Employment and earnings by educa- tional 
attainment and age group 

National Longitudinal Survey of Youth 1997 1997–2011, 
2013, 2015 

College attainment; employment and wages; 
marriage and fertility; crimi- nal behavior; risky health 
behaviors; mobility (geographic, industry, occu- 
pation); asset and home ownership 

Panel B. Supplemental Outcomes

100 Percent Sample Census 1990 Population; share of the population employed in 
manufacturing; share of the female population in the 
labor force; share of the population without a college 
degree; share of the popula- tion that is black, Asian, 
and of other races (Native American and Pacific 
Islander); share of population that is foreign-born; 
average household in- come 

Quarterly Census of Employment and Wages Local Area 
Unemployment 

1990–2015 
1990–2015 

Employment counts Unemployment rate; 
unemployment counts; labor force population counts 

County Business Patterns Surveillance, Epidemiology, and End 
Results 

1990 1990–2015 Employment counts by industry Population counts 
(aged 18–34, aged 18–24) 



TABLE A2. Summary Statistics of Commuting Zone Variables, 1990–2015

Pre-PNTR (1990–2000) Post-PNTR (2001–2015)

Mean SD N Mean SD N

Panel A. Per-capita college outcomes
Four-year enrollment 0.987 1.047 4370 1.400 1.239 6199
Four-year male enrollment 0.902 0.990 4357 1.239 1.146 6191
Four-year female enrollment 1.074 1.127 4360 1.566 1.373 6194
Four-year completion 1.145 1.067 4443 1.721 1.573 6251
Four-year male completion 0.978 1.013 4427 1.375 1.287 6237
Four-year female completion 1.317 1.155 4428 2.077 1.944 6244
Two-year enrollment 1.334 0.912 6033 1.388 0.777 7969
Two-year male enrollment 1.178 1.102 5897 1.220 0.790 7746
Two-year female enrollment 1.497 0.856 6026 1.568 0.830 7951
Two-year completion 1.418 1.438 5875 1.955 1.210 7993
Two-year male completion 1.143 1.847 5757 1.493 1.341 7778
Two-year female completion 1.703 1.268 5869 2.439 1.295 7986

Panel B. Demographic and economic covariates
PNTR exposure in 2000 8.361 2.777 722
Total population in 1990 (millions) 3.090 3.985 722
Percent of population that is Asian in 1990 2.703 3.125 722
Percent of population that is black in 1990 12.285 9.838 722
Percent of population that is of other races in 1990 4.101 5.409 722
Percent of population that is foreign-born in 1990 8.226 8.457 722
Percent of population that is non-college in 1990 54.281 8.745 722
Female labor force participation rate in 1990 44.511 4.280 722
Percent employed in manufacturing in 1990 6.933 3.630 722
Average household income in 1990 (thousands) 50.691 10.566 722
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TABLE A2. Summary Statistics of Commuting Zone Variables, 1990–2015 

 Pre-PNTR (1990–2000) Post-PNTR (2001–2015) 

Mean SD N Mean SD N 

Panel A. Per-capita college outcomes 

Four-year enrollment 0.987 1.047 4370 1.400 1.239 6199 
Four-year male enrollment 0.902 0.990 4357 1.239 1.146 6191 

Four-year female enrollment 1.074 1.127 4360 1.566 1.373 6194 

Four-year completion 1.145 1.067 4443 1.721 1.573 6251 

Four-year male completion 0.978 1.013 4427 1.375 1.287 6237 

6244 

Two-year enrollment 1.334 0.912 6033 1.388 0.777 7969 

Two-year male enrollment 1.178 1.102 5897 1.220 0.790 7746 

Two-year female enrollment 1.497 0.856 6026 1.568 0.830 7951 

Two-year completion 1.418 1.438 5875 1.955 1.210 7993 

Two-year male completion 1.143 1.847 5757 1.493 1.341 7778 

Two-year female completion 1.703 1.268 5869 2.439 1.295 7986 

Panel B. Demographic and economic covariates 

PNTR exposure in 2000 8.361 2.777 722 

Total population in 1990 (millions) 3.090 3.985 722 

Percent of population that is Asian in 1990 2.703 3.125 722 

Percent of population that is black in 1990 12.285 9.838 722 

Percent of population that is of other races in 1990 4.101 5.409 722 

Percent of population that is foreign-born in 1990 8.226 8.457 722 

Percent of population that is non-college in 1990 54.281 8.745 722 

Female labor force participation rate in 1990 44.511 4.280 722 

Percent employed in manufacturing in 1990 6.933 3.630 722 

Average household income in 1990 (thousands) 50.691 10.566 722 



TABLE A3. Summary Statistics of Individual Baseline Covariates, NLSY97 Data

Mean SD N

Panel A. Individual covariates
Age at 30 29.47 0.60 6772
Born in U.S. (%) 81.94 38.47 6772
Female (%) 50.18 50.00 6772
Race white (%) 68.99 46.26 6772
Race black (%) 17.85 38.29 6772
Race Hispanic (%) 13.16 33.81 6772
AFQT score 166.89 31.41 5418
100 × Non-cognitive skills index -0.76 98.07 6601
100 × Social skills index 2.58 102.04 6772
100 × School summary index 4.73 97.32 6763
100 × Peer summary index 5.34 98.28 6761
Father’s HGC 1–11 years (%) 12.24 32.78 6772
Father’s HGC 12 years (%) 23.42 42.35 6772
Father’s HGC 13–15 years (%) 14.38 35.09 6772
Father’s HGC 16+ years (%) 18.80 39.08 6772
Mother’s HGC 1–11 years (%) 16.32 36.96 6772
Mother’s HGC 12 years (%) 32.11 46.69 6772
Mother’s HGC 13–15 years (%) 22.86 42.00 6772
Mother’s HGC 16+ years(%) 18.97 39.21 6772
Live with both parents (%) 52.03 49.96 6749
Live with single father (%) 3.58 18.59 6749
Live with single mother (%) 24.68 43.12 6749
Live with other HH members (%) 19.70 39.78 6749
Mom’s age ≥ 29 (%) 28.22 45.01 6314
Mom’s age 24–28 (%) 34.17 47.43 6314
Mom’s age ≤ 23 (%) 37.61 48.44 6314
Household income in 1996 (thousands) 50.16 43.22 5009

Panel B. CZ covariates
PNTR exposure (pp) 8.54 3.28 6772
Living in top-third PNTR CZs (%) 30.28 45.95 6772

Note: N = 6,772. All summary statistics are weighted by the NLSY97 sampling weights. Noncog-
nitive skills, social skills, 1997 school index, and 1997 peer index are defined in the main article.
Residence parents’ educational attainment are categorized by highest grade completed in 1997.
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TABLE A3. Summary Statistics of Individual Baseline Covariates, NLSY97 Data 

 Mean SD N 

Panel A. Individual covariates 

Age at 30 29.47 0.60 6772 

Born in U.S. (%) 81.94 38.47 6772 

Female (%) 50.18 50.00 6772 

Race white (%) 68.99 46.26 6772 

Race black (%) 17.85 38.29 6772 

Race Hispanic (%) 13.16 33.81 6772 

AFQT score 166.89 31.41 5418 

100 × Non-cognitive skills index -0.76 98.07 6601 

100 × Social skills index 2.58 102.04 6772 

100 × School summary index 4.73 97.32 6763 

100 × Peer summary index 5.34 98.28 6761 

Father’s HGC 1–11 years (%) 12.24 32.78 6772 

Father’s HGC 12 years (%) 23.42 42.35 6772 

Father’s HGC 13–15 years (%) 14.38 35.09 6772 

Father’s HGC 16+ years (%) 18.80 39.08 6772 

Mother’s HGC 1–11 years (%) 16.32 36.96 6772 

Mother’s HGC 12 years (%) 32.11 46.69 6772 

Mother’s HGC 13–15 years (%) 22.86 42.00 6772 

Mother’s HGC 16+ years(%) 18.97 39.21 6772 

Live with both parents (%) 52.03 49.96 6749 

Live with single father (%) 3.58 18.59 6749 

Live with single mother (%) 24.68 43.12 6749 

Live with other HH members (%) 19.70 39.78 6749 

Mom’s age ≥ 29 (%) 28.22 45.01 6314 

Mom’s age 24–28 (%) 34.17 47.43 6314 

Mom’s age ≤ 23 (%) 37.61 48.44 6314 

Household income in 1996 (thousands) 50.16 43.22 5009 

Panel B. CZ covariates 

PNTR exposure (pp) 8.54 3.28 6772 

Living in top-third PNTR CZs (%) 30.28 45.95 6772 

Note: N= 6,772. All summary statistics are weighted by the NLSY97 sampling weights. Noncog- nitive 
skills, social skills, 1997 school index, and 1997 peer index are defined in the main article. Residence 
parents’ educational attainment are categorized by highest grade completed in 1997. 



TABLE A4. Summary Indices, NLSY Data

Outcome Category Summary Index Individual Components

Adult Economic Success Total assets at age 30 (+); has owned a home by age 30 (+); has been married
by age 30 (+); has lived in a different state as 1997 by age 30 (+); percent of
county population with at least a bachelor’s degree at age 30 (+).

Criminal Behavior Has been arrested by age 30 (-); has been incarcerated by age 30 (-); has not
looked for work because of incapacitation by age 30 (-); has left job because
of incapacitation by age 30 (-).

Geographic Mobility Average CZ-level exposure to PNTR by age 30 (-); has lived in a different
state as 1997 by age 30 (+); has lived in a different CZ as 1997 by age 30
(+); has lived in a different county as 1997 by age 30 (+).

Industry Mobility Average industry-level exposure to PNTR by age 30 (-); has been employed
in manufacturing by age 30 (-).

Life Event Has had a child as a college-goer by age 30 (-); has had at least three children
as a college-goer by age 30 (-); has been a single parent (unmarried with
child) as a college-goer by age 30 (-); has left job because of family reasons
by age 30 (-); has not looked for work because of family reasons by age 30
(-).

Risky Health Behavior Average number of days drank alcohol in the last 30 days by age 30 (-);
average number of times used illegal drugs since last interview by age 30
(-); average number of days drank before/during school or work hours in
the last 30 days by age 30 (-); average number of times used illegal drugs
before/during school or work hours in the last 30 days by age 30 (-).

Occupation Average routine-intensity of employment by age 30 (-); average social skill-
intensity of employment by age 30 (+); average math-intensity of employ-
ment by age 30 (+).

Note: This table documents the individual components of each summary index used in the main
article. The parentheses document whether an individual component is a “desirable” outcome (+)
or an “undesirable” outcome (-). Undesirable outcomes are rescaled so that larger positive values
correspond to more desirable outcomes.
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TABLE A4. Summary Indices, NLSY Data 

Outcome Category Summary Index Individual Components 

Adult Economic Success Total assets at age 30 (+); has owned a home by age 30 (+); has been married by age 30 (+); has lived in 
a different state as 1997 by age 30 (+); percent of county population with at least a bachelor’s degree at 
age 30 (+). 

Criminal Behavior Has been arrested by age 30 (-); has been incarcerated by age 30 (-); has not looked for work because of 
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Geographic Mobility Average CZ-level exposure to PNTR by age 30 (-); has lived in a different state as 1997 by age 30 (+); 
has lived in a different CZ as 1997 by age 30 (+); has lived in a different county as 1997 by age 30 (+). 

Industry Mobility Average industry-level exposure to PNTR by age 30 (-); has been employed in manufacturing by age 30 
(-). 

Life Event Has had a child as a college-goer by age 30 (-); has had at least three children as a college-goer by age 
30 (-); has been a single parent (unmarried with child) as a college-goer by age 30 (-); has left job 
because of family reasons by age 30 (-); has not looked for work because of family reasons by age 30 (-). 

Risky Health Behavior Average number of days drank alcohol in the last 30 days by age 30 (-); average number of times used 
illegal drugs since last interview by age 30 (-); average number of days drank before/during school or work 
hours in the last 30 days by age 30 (-); average number of times used illegal drugs before/during school or 
work hours in the last 30 days by age 30 (-). 

Occupation Average routine-intensity of employment by age 30 (-); average social skill- intensity of employment by 
age 30 (+); average math-intensity of employ- ment by age 30 (+). 

Note: This table documents the individual components of each summary index used in the main article. 
The parentheses document whether an individual component is a “desirable” outcome (+) or an 
“undesirable” outcome (-). Undesirable outcomes are rescaled so that larger positive values correspond 
to more desirable outcomes. 



TABLE A5. Top and Bottom 20 PNTR-Exposed Commuting Zones

Rank Commuting Zone State Rank Commuting Zone State
1 Morganton North Carolina 703 Mobridge South Dakota
2 Bennettsville South Carolina 704 Colstrip Montana
3 Galax Virginia 705 Miller South Dakota
4 Hickory North Carolina 706 Winner South Dakota
5 Washington Georgia 707 Burlington Colorado
6 Lexington Tennessee 708 O’Neill Nebraska
7 McMinnville Tennessee 709 Carrington North Dakota
8 Gastonia North Carolina 710 Welch West Virginia
9 Crossville Tennessee 711 Hazard Kentucky
10 Rome Georgia 712 Center Kansas
11 New Albany Mississippi 713 Haskell Texas
12 Tupelo Mississippi 714 Coldwater Kansas
13 Corinth Mississippi 715 Wano Kansas
14 Henderson North Carolina 716 East Grant North Dakota
15 Martinsville Virginia 717 East Corson South Dakota
16 Griffin Georgia 718 Steele North Dakota
17 Cleveland Tennessee 719 Loa Utah
18 Talladega Alabama 720 Ekalaka South Dakota
19 Toccoa Georgia 721 Mission South Dakota
20 Starkville Mississippi 722 Murdo South Dakota
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Rank Commuting Zone State Rank Commuting Zone State 

1 Morganton North Carolina 703 Mobridge South Dakota 

2 Bennettsville South Carolina 704 Colstrip Montana 

3 Galax Virginia 705 Miller South Dakota 

4 Hickory North Carolina 706 Winner South Dakota 

5 Washington Georgia 707 Burlington Colorado 

6 Lexington Tennessee 708 O’Neill Nebraska 

7 McMinnville Tennessee 709 Carrington North Dakota 

8 Gastonia North Carolina 710 Welch West Virginia 

9 Crossville Tennessee 711 Hazard Kentucky 

10 Georgia 712 Center Kansas 

11 New Albany Mississippi 713 Haskell Texas 

12 Tupelo Mississippi 714 Coldwater Kansas 

13 Corinth Mississippi 715 Wano Kansas 

14 Henderson North Carolina 716 East Grant North Dakota 

15 Martinsville Virginia 717 East Corson South Dakota 

16 Griffin Georgia 718 Steele North Dakota 

17 Cleveland Tennessee 719 Loa Utah 

18 Talladega Alabama 720 Ekalaka South Dakota 

19 Toccoa Georgia 721 Mission South Dakota 

20 Starkville Mississippi 722 Murdo South Dakota 



B Additional Tables and Figures
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FIGURE B1. Effect of PNTR on Local Employment Trends, No CZ Controls, BLS Data,1990–
2015

Source: Author’s calculations from the 1990 to 2015 Bureau of Labor Statistics, Local Area Un-
employment, and Quarterly Census of Employment and Wages Data.

49

B Additional Tables and Figures 

FIGURE B1. Effect of PNTR on Local Employment Trends, No CZ Controls, BLS Data,1990– 2015 

Source: Author’s calculations from the 1990 to 2015 Bureau of Labor Statistics, Local Area Un- 
employment, and Quarterly Census of Employment and Wages Data. 
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FIGURE B2. Effect of PNTR on College Enrollment and Attainment Trends, No CZ Controls,
IPEDS Data,1990–2015

Source: Author’s calculations from the 1990 to 2015 Integrated Postsecondary Eduaction System
Data.
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FIGURE B2. Effect of PNTR on College Enrollment and Attainment Trends, No CZ Controls, IPEDS 
Data,1990–2015 

Source: Author’s calculations from the 1990 to 2015 Integrated Postsecondary Eduaction 
System Data. 



TABLE B1. Pre-Great Recession Effect of PNTR on Commuting Zone Employment, BLS Data, 1990–
2007

Dependent variable:
employment and
labor force participation

Log total
employment

(1)

Log mfg
employment

(2)

Log nmfg
employment

(3)

Log
unemp.

(4)

Unemp.
rate
(5)

Labor force-
to-pop. ratio

(6)

PNTR × Post -1.10*** -1.79*** -0.21 1.05** 0.11*** -0.07
(0.21) (0.43) (0.21) (0.41) (0.02) (0.10)
[-3.05] [-4.97] [-0.57] [2.93] [0.31] [-0.20]

R2 1.00 1.00 1.00 0.99 0.88 0.90
Mean dep. var. 1313.40 1119.66 1295.10 1051.38 5.49 81.20
Observations 12965 12211 12965 12965 12965 12965

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates
are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed
effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a one
standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5
percent, and *** at 1 percent.
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TABLE B1. Pre-Great Recession Effect of PNTR on Commuting Zone Employment, BLS Data, 1990– 
2007 

Dependent variable: employment 
and labor force participation 

Log total 
employment (1) 

Log mfg 
employment (2) 

Log nmfg 
employment (3) 

Log unemp. 
(4) 

Unemp. rate 
(5) 

Labor force- 
to-pop. ratio (6) 

PNTR × Post -1.10*** -1.79*** -0.21 1.05** 0.11*** -0.07

(0.21) (0.43) (0.21) (0.41) (0.02) (0.10) 

[-3.05] [-4.97] [-0.57] [2.93] [0.31] [-0.20] 

R2 1.00 1.00 1.00 0.99 0.88 0.90 

Mean dep. var. 1313.40 1119.66 1295.10 1051.38 5.49 81.20 

Observations 12965 12211 12965 12965 12965 12965 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B2. Sensitivity Analysis of Labor Market Effects of PNTR, BLS Data, 1990–2015

Dependent variable:
local employment,
with varying regional
and labor market
control variables

Preferred
estimates

(1)

Column 1,
Census

division-year
fixed effects

(2)

Column 1,
state-year

fixed effects
(3)

Column 1,
exclude

high-tech
industries

(4)

Column 1,
include

additional
trade-policy

variables
(5)

Column 1,
include

additional
housing boom

variable
(6)

Panel A. Log employment
PNTR × Post -1.58*** -1.30*** -1.32*** -1.91*** -1.32*** -1.59***

(0.24) (0.23) (0.23) (0.29) (0.27) (0.25)
Panel B. Log mfg employment
PNTR × Post -2.35*** -2.10*** -2.38*** -2.45*** -2.10*** -2.22***

(0.62) (0.62) (0.39) (0.70) (0.61) (0.62)
Panel C. Log nmfg employment
PNTR × Post -0.38 -0.13 -0.16 -0.59** -0.40 -0.38

(0.23) (0.22) (0.23) (0.27) (0.25) (0.25)
Panel D. Log unemployment
PNTR × Post 0.89** 1.10*** -0.14 0.83* 1.44*** 0.78*

(0.41) (0.40) (0.39) (0.44) (0.45) (0.44)
Panel E. Unemployment rate
PNTR × Post 0.15*** 0.14*** 0.10*** 0.17*** 0.17*** 0.15***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Panel F. Labor force-to-pop. ratio
PNTR × Post -0.19** -0.15 -0.16 -0.18* -0.13 -0.24***

(0.09) (0.09) (0.11) (0.10) (0.10) (0.09)

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates includes interac-
tions of the post-2001 dummy with several 1990 CZ characteristics: log population; share of the population employed
in manufacturing; share of the female population in the labor force; share of the population without a college degree;
share of the population that is black, Asian, and of other races (Native American and Pacific Islander); share of popula-
tion that is foreign-born; and average household income. All regressions include commuting zone fixed effects. Except
for columns 2 and 3, all regressions use region-by-year fixed effects; column 2 uses Census division-year fixed effects;
column 3 uses state-year fixed effects. Column 4 uses PNTR net of high-tech industries as the regressor of interest.
Column 5 additionally includes NTR tariff rates and MFA fill rates. Column 6 additionally includes estimates of struc-
tural breaks in local housing prices. Robust standard errors are clustered at the CZ level. Significance level is denoted
* at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B2. Sensitivity Analysis of Labor Market Effects of PNTR, BLS Data, 1990–2015 
Dependent variable: local employment, 
with varying regional and labor market 
control variables 

Preferred 
estimates (1) 

Column 1, 
Census 
division-year 
fixed effects (2) 

Column 1, 
state-year fixed 
effects (3) 

Column 1, 
exclude 
high-tech 
industries (4) 

Column 1, 
include 
additional 
trade-policy 
variables (5) 

Column 1, include 
additional housing 
boom variable (6) 

Panel A. Log employment

PNTR × Post -1.58*** -1.30*** -1.32*** -1.91*** -1.32*** -1.59*** 
(0.24) (0.23) (0.23) (0.29) (0.27) (0.25) 

Panel B. Log mfg employment 
PNTR × Post -2.35*** -2.10*** -2.38*** -2.45*** -2.10*** -2.22*** 

(0.62) (0.62) (0.39) (0.70) (0.61) (0.62) 
Panel C. Log nmfg employment 
PNTR × Post -0.38 -0.13 -0.16 -0.59** -0.40 -0.38 

(0.23) (0.22) (0.23) (0.27) (0.25) (0.25) 
Panel D. Log unemployment
PNTR × Post 0.89** 1.10*** -0.14 0.83* 1.44*** 0.78* 

(0.41) (0.40) (0.39) (0.44) (0.45) (0.44) 
Panel E. Unemployment rate 
PNTR × Post 0.15*** 0.14*** 0.10*** 0.17*** 0.17*** 0.15*** 

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
Panel F. Labor force-to-pop. ratio 
PNTR × Post -0.19** -0.15 -0.16 -0.18* -0.13 -0.24*** 

(0.09) (0.09) (0.11) (0.10) (0.10) (0.09) 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates includes interac- tions of the post-2001 
dummy with several 1990 CZ characteristics: log population; share of the population employed in manufacturing; share of the female 
population in the labor force; share of the population without a college degree; share of the population that is black, Asian, and of other races 
(Native American and Pacific Islander); share of popula- tion that is foreign-born; and average household income. All regressions include 
commuting zone fixed effects. Except for columns 2 and 3, all regressions use region-by-year fixed effects; column 2 uses Census 
division-year fixed effects; column 3 uses state-year fixed effects. Column 4 uses PNTR net of high-tech industries as the regressor of interest. 
Column 5 additionally includes NTR tariff rates and MFA fill rates. Column 6 additionally includes estimates of struc- tural breaks in local 
housing prices. Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 
percent. 



TABLE B3. Sensitivity Analysis of Employment and Earnings Estimates, Census/ACS Data, 1990, 2000, 2005–2015

Dependent
variable:
population,
employment
earnings, and
earnings gap

Population
share that is
high school
graduates,

aged 18–19
(1)

Population
share that is

college
dropouts,

aged 25–34
(2)

Population
share that is

college
graduates,

aged 25–34
(2)

College
dropout
avg. log
earnings,

aged 25–34
(4)

College
graduate
avg. log
earnings,

aged 25–34
(5)

College
dropout-

noncollege
earnings gap,
aged 25–34

(6)

College
graduate-

noncollege
earnings gap,
aged 25–34

(7)

PNTR × Post 0.13* 0.11** -0.32*** -1.19*** -0.99*** -0.24 -0.04
(0.07) (0.05) (0.05) (0.19) (0.17) (0.17) (0.21)
[0.35] [0.30] [-0.90] [-3.30] [-2.75] [-0.65] [-0.11]

R2 0.48 0.74 0.93 0.74 0.72 0.17 0.41
Mean dep. var. 35.97 34.35 27.67 1024.49 1063.41 19.19 58.11
Observations 9386 9386 9386 9386 9381 9386 9381

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined
at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed effects. Robust standard
errors are clustered at the CZ level. Brackets include the implied effect of a one standard deviation increase in expo-
sure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B3. Sensitivity Analysis of Employment and Earnings Estimates, Census/ACS Data, 1990, 2000, 2005–2015 

Dependent 
variable: 
population, 
employment 
earnings, and 
earnings gap 

Population 
share that is 
high school 
graduates, aged 
18–19 (1) 

Population 
share that is 
college 
dropouts, aged 
25–34 (2) 

Population 
share that is 
college 
graduates, aged 
25–34 (2) 

College 
dropout avg. 
log earnings, 
aged 25–34 (4) 

College 
graduate avg. 
log earnings, 
aged 25–34 (5) 

College dropout- 
noncollege 
earnings gap, 
aged 25–34 (6) 

College 
graduate- 
noncollege 
earnings gap, 
aged 25–34 (7) 

PNTR × Post 0.13* 0.11** -0.32*** -1.19*** -0.99*** -0.24 -0.04 
(0.07) (0.05) (0.05) (0.19) (0.17) (0.17) (0.21) 
[0.35] [0.30] [-0.90] [-3.30] [-2.75] [-0.65] [-0.11] 

R2 0.48 0.74 0.93 0.74 0.72 0.17 0.41 
Mean dep. var. 35.97 34.35 27.67 1024.49 1063.41 19.19 58.11 
Observations 9386 9386 9386 9386 9381 9386 9381 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a one 
standard deviation increase in expo- sure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B4. Sensitivity Analysis of College Enrollment and Attainment Effects of PNTR, IPEDS Data, 1990–2015

Dependent variable:
college enrollment and
completion per capita,
with varying regional
and labor market
control variables

Preferred
estimates

(1)

Column 1,
Census

division-year
fixed effects

(2)

Column 1,
state-year

fixed effects
(3)

Column 1,
exclude

high-tech
industries

(4)

Column 1,
include

additional
trade-policy

variables
(5)

Column 1,
include

additional
housing boom

variable
(6)

Panel A. Total enrollment
PNTR × Post 0.04*** 0.04*** 0.03** 0.04** 0.04*** 0.04***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Panel B. Two-year enrollment
PNTR × Post 0.03*** 0.04*** 0.03*** 0.04*** 0.04*** 0.03**

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Panel C. Four-year enrollment
PNTR × Post 0.01 0.01 0.00 0.01 0.01 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Panel D. Total completion
PNTR × Post 0.01 0.01 0.00 -0.00 0.02 0.02

(0.02) (0.03) (0.02) (0.03) (0.02) (0.03)
Panel E. Two-year completion
PNTR × Post 0.02 0.01 0.01 0.03 0.03 0.02

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02)
Panel F. Four-year completion
PNTR × Post -0.01 0.00 -0.01 -0.03* -0.02 0.00

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates includes in-
teractions of the post-2001 dummy with several 1990 CZ characteristics: log population; share of the population
employed in manufacturing; share of the female population in the labor force; share of the population without a col-
lege degree; share of the population that is black, Asian, and of other races (Native American and Pacific Islander);
share of population that is foreign-born; and average household income. All regressions include commuting zone
fixed effects. Except for columns 2 and 3, all regressions use region-by-year fixed effects; column 2 uses Census
division-year fixed effects; Column 3 uses state-year fixed effects. Column 4 uses PNTR net of high-tech industries
as the regressor of interest. Column 5 additionally includes NTR tariff rates and MFA fill rates. Column 6 addition-
ally includes estimates of structural breaks in local housing prices. Robust standard errors are clustered at the CZ
level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B4. Sensitivity Analysis of College Enrollment and Attainment Effects of PNTR, IPEDS Data, 1990–2015 

Dependent variable: college enrollment 
and completion per capita, with varying 
regional and labor market control 
variables 

Preferred 
estimates (1) 

Column 1, 
Census 
division-year 
fixed effects (2) 

Column 1, 
state-year fixed 
effects (3) 

Column 1, 
exclude 
high-tech 
industries (4) 

Column 1, 
include 
additional 
trade-policy 
variables (5) 

Column 1, include 
additional housing 
boom variable (6) 

Panel A. Total enrollment 

PNTR × Post 0.04*** 0.04*** 0.03** 0.04** 0.04*** 0.04*** 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Panel B. Two-year enrollment 
PNTR × Post 0.03*** 0.04*** 0.03*** 0.04*** 0.04*** 0.03** 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Panel C. Four-year enrollment 
PNTR × Post 0.01 0.01 0.00 0.01 0.01 0.02 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Panel D. Total completion 
PNTR × Post 0.01 0.01 0.00 -0.00 0.02 0.02 

(0.02) (0.03) (0.02) (0.03) (0.02) (0.03) 

Panel E. Two-year completion 
PNTR × Post 0.02 0.01 0.01 0.03 0.03 0.02 

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) 
Panel F. Four-year completion 
PNTR × Post -0.01 0.00 -0.01 -0.03* -0.02 0.00 

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates includes in- 
teractions of the post-2001 dummy with several 1990 CZ characteristics: log population; share of the population 
employed in manufacturing; share of the female population in the labor force; share of the population without a col- lege 
degree; share of the population that is black, Asian, and of other races (Native American and Pacific Islander); share of 
population that is foreign-born; and average household income. All regressions include commuting zone fixed effects. 
Except for columns 2 and 3, all regressions use region-by-year fixed effects; column 2 uses Census division-year fixed 
effects; Column 3 uses state-year fixed effects. Column 4 uses PNTR net of high-tech industries as the regressor of 
interest. Column 5 additionally includes NTR tariff rates and MFA fill rates. Column 6 addition- ally includes estimates of 
structural breaks in local housing prices. Robust standard errors are clustered at the CZ level. Significance level is 
denoted * at 10 percent, ** at 5 percent, and *** at 1 percent. 



TABLE B5. Pre-Great Recession Effect of PNTR and College Enrollment and Attainment, IPEDS Data,
1990–2007

Dependent variable:
college enrollment and
completion per capita

Total
enrollment

(1)

Two-year
enrollment

(2)

Four-year
enrollment

(3)

Total
completion

(4)

Two-year
completion

(5)

Four-year
completion

(6)

PNTR × Post 0.02* 0.02* 0.01 0.01 0.01 -0.01
(0.01) (0.01) (0.01) (0.02) (0.02) (0.01)
[0.06] [0.05] [0.02] [0.02] [0.04] [-0.02]

R2 0.85 0.68 0.95 0.80 0.67 0.95
Mean dep. var. 2.41 1.37 1.12 2.73 1.55 1.27
Observations 10527 9798 7200 10451 9640 7303

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates
are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed
effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a
one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, **
at 5 percent, and *** at 1 percent.
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TABLE B5. Pre-Great Recession Effect of PNTR and College Enrollment and Attainment, IPEDS Data, 
1990–2007 

Dependent variable: college 
enrollment and completion per 
capita 

Total enrollment 
(1) 

Two-year 
enrollment (2) 

Four-year 
enrollment (3) 

Total completion 
(4) 

Two-year 
completion (5) 

Four-year 
completion (6) 

PNTR × Post 0.02* 0.02* 0.01 0.01 0.01 -0.01 

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

[0.06] [0.05] [0.02] [0.02] [0.04] [-0.02] 
R2 0.85 0.68 0.95 0.80 0.67 0.95 

Mean dep. var. 2.41 1.37 1.12 2.73 1.55 1.27 

Observations 10527 9798 7200 10451 9640 7303 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are 
clustered at the CZ level. Brackets include the implied effect of a one standard deviation increase in 
exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B6. Sensitivity Analysis of IPEDS Sample Selection, IPEDS Data, 1990–2015

Dependent variable:
college enrollment and
completion per capita,
alternative samples and
population adjustments

Total
enrollment,

exclude
for-profit
colleges

(1)

Total
completion,

exclude
for-profit
colleges

(2)

Total
enrollment,

exclude
L2 colleges

(3)

Total
completion,

exclude
L2 colleges

(4)

Total
enrollment,

include
selective
colleges

(5)

Total
completion,

include
selective
colleges

(6)

PNTR × Post 0.04*** 0.01 0.04*** 0.01 0.05*** 0.02
(0.01) (0.02) (0.01) (0.02) (0.01) (0.02)
[0.11] [0.04] [0.12] [0.03] [0.14] [0.05]

R2 0.88 0.82 0.86 0.81 0.88 0.81
Mean dep. var. 2.11 2.52 2.28 2.81 3.32 3.99
Observations 14836 14819 14836 14701 15164 14825

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are
defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed effects.
Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a one standard
deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and
*** at 1 percent.
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TABLE B6. Sensitivity Analysis of IPEDS Sample Selection, IPEDS Data, 1990–2015 

Dependent variable: college 
enrollment and completion per 
capita, alternative samples and 
population adjustments 

Total enrollment, 
exclude for-profit 
colleges (1) 

Total completion, 
exclude for-profit 
colleges (2) 

Total enrollment, 
exclude L2 
colleges (3) 

Total completion, 
exclude L2 
colleges (4) 

Total enrollment, 
include selective 
colleges (5) 

Total completion, 
include selective 
colleges (6) 

PNTR × Post 0.04*** 0.01 0.04*** 0.01 0.05*** 0.02 

(0.01) (0.02) (0.01) (0.02) (0.01) (0.02) 

[0.11] [0.04] [0.12] [0.03] [0.14] [0.05] 

R2 0.88 0.82 0.86 0.81 0.88 0.81 

Mean dep. var. 2.11 2.52 2.28 2.81 3.32 3.99 

Observations 14836 14819 14836 14701 15164 14825 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B7. Sensitivity Analysis of College Outcome Measurement, IPEDS Data, 1990–2015

Dependent variable:
college enrollment and
completion per capita,
alternative definitions

First-time
full-time

enrollment
per 18–24

capita
(1)

Total
award

per 18–24
capita

(2)

Total
first-time

enrollment
per 18–34

capita
(3)

Total
full-time

enrollment
per 18–34

capita
(4)

Total fall
enrollment
per 18–34

capita
(5)

Total
certificate

awards
per 18–34

capita
(6)

Total
associate’s

degrees
per 18–34

capita
(7)

Total
bachelor’s

degrees
per 18–34

capita
(8)

PNTR × Post 0.08*** 0.01 0.04* 0.11** 0.09 0.02 0.00 -0.00
(0.03) (0.06) (0.02) (0.06) (0.09) (0.02) (0.01) (0.01)
[0.22] [0.02] [0.11] [0.31] [0.25] [0.04] [0.01] [-0.00]

R2 0.79 0.68 0.75 0.76 0.68 0.57 0.77 0.82
Mean dep. var. 6.06 7.53 3.39 9.75 17.60 0.97 1.01 1.22
Observations 15145 15072 15147 15148 15148 14067 13931 10597

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bot-
tom of Table 1. All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered
at the CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B7. Sensitivity Analysis of College Outcome Measurement, IPEDS Data, 1990–2015 

Dependent variable: college 
enrollment and completion 
per capita, alternative 
definitions 

First-time 
full-time 
enrollment 
per 18–24 
capita (1) 

Total award 
per 18–24 
capita (2) 

Total 
first-time 
enrollment 
per 18–34 
capita (3) 

Total full-time 
enrollment 
per 18–34 
capita (4) 

Total fall 
enrollment 
per 18–34 
capita (5) 

Total 
certificate 
awards per 
18–34 capita 
(6) 

Total 
associate’s 
degrees per 
18–34 capita 
(7) 

Total 
bachelor’s 
degrees per 
18–34 capita 
(8) 

PNTR × Post 0.08*** 0.01 0.04* 0.11** 0.09 0.02 0.00 -0.00 

(0.03) (0.06) (0.02) (0.06) (0.09) (0.02) (0.01) (0.01) 
[0.22] [0.02] [0.11] [0.31] [0.25] [0.04] [0.01] [-0.00] 

R2 0.79 0.68 0.75 0.76 0.68 0.57 0.77 0.82 
Mean dep. var. 6.06 7.53 3.39 9.75 17.60 0.97 1.01 1.22 
Observations 15145 15072 15147 15148 15148 14067 13931 10597 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bot- tom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a one 
standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B8. Gender Differentials in College Enrollment and Attainment Effects of PNTR, IPEDS Data,
1990–2015

Dependent variable:
college enrollment and
completion per capita
by gender

Total
enrollment

(1)

Two-year
enrollment

(2)

Four-year
enrollment

(3)

Total
completion

(4)

Two-year
completion

(5)

Four-year
completion

(6)

Panel A. Men
PNTR × Post 0.04*** 0.03*** 0.01 0.01 0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01)
[0.11] [0.09] [0.03] [0.03] [0.05] [-0.02]

R2 0.78 0.57 0.93 0.69 0.57 0.84
Mean dep. var. 2.22 1.20 1.10 2.47 1.34 1.21
Observations 15007 13640 10541 14936 13527 10659
Panel B. Women
PNTR × Post 0.04*** 0.03*** 0.02 0.01 0.03 -0.02

(0.01) (0.01) (0.01) (0.03) (0.02) (0.02)
[0.11] [0.08] [0.05] [0.03] [0.09] [-0.06]

R2 0.85 0.72 0.90 0.73 0.70 0.70
Mean dep. var. 2.80 1.54 1.36 3.77 2.13 1.76
Observations 15127 13974 10546 15062 13847 10666

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates
are defined at the bottom of Table 1. All regressions include commuting zone and region-by-year fixed
effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect of a
one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, **
at 5 percent, and *** at 1 percent.
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TABLE B8. Gender Differentials in College Enrollment and Attainment Effects of PNTR, IPEDS Data, 
1990–2015 

Dependent variable: college 
enrollment and completion per 
capita by gender 

Total enrollment 
(1) 

Two-year 
enrollment (2)

Four year 
enrollment (3)

Total completion 
(4) 

Two-year 
completion (5) 

Four-year 
completion (6) 

Panel A. Men 

PNTR × Post 0.04*** 0.03*** 0.01 0.01 0.02 -0.01 

(0.01) (0.01) (0.01) (0.02) (0.02) (0.01) 

[0.11] [0.09] [0.03] [0.03] [0.05] [-0.02] 
R2 0.78 0.57 0.93 0.69 0.57 0.84 

Mean dep. var. 2.22 1.20 1.10 2.47 1.34 1.21 

Observations 15007 13640 10541 14936 13527 10659 
Panel B. Women 

PNTR × Post 0.04*** 0.03*** 0.02 0.01 0.03 -0.02 

(0.01) (0.01) (0.01) (0.03) (0.02) (0.02) 

[0.11] [0.08] [0.05] [0.03] [0.09] [-0.06] 

R2 0.85 0.72 0.90 0.73 0.70 0.70 

Mean dep. var. 2.80 1.54 1.36 3.77 2.13 1.76 

Observations 15127 13974 10546 15062 13847 10666 

Note: All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the bottom of Table 1.

All regressions include commuting zone and region-by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B9. Effect of PNTR on Public College Revenues and Expenditures, IPEDS Data, 1990–2015

Dependent variable:
public college revenues
and expenditures

Total
public

funding
(1)

Federal
funding

(2)

State and
local

funding
(3)

Tuition
and fees

(4)

Total
education
spending

(5)

Instruction
spending

(6)

Panel A. Log dollars per capita (percent)
PNTR × Post -0.94* 0.37 -1.00* -0.04 -0.39 -0.24

(0.51) (0.65) (0.59) (0.48) (0.35) (0.44)
[-2.62] [1.02] [-2.77] [-0.12] [-1.09] [-0.66]

R2 0.90 0.90 0.87 0.95 0.90 0.90
Mean dep. var. 932.72 779.92 904.35 843.80 939.20 884.14
Panel B. Log total value (percent)
PNTR × Post -0.85* 0.46 -0.91 0.05 -0.30 -0.15

(0.51) (0.74) (0.56) (0.54) (0.36) (0.44)
[-2.37] [1.27] [-2.52] [0.13] [-0.84] [-0.41]

R2 0.99 0.98 0.99 0.99 1.00 1.00
Mean dep. var. 1965.60 1812.80 1937.23 1876.69 1972.09 1917.02
Panel C. Dollars per capita ($1,000 pc)
PNTR × Post -0.16** -0.04 -0.12** -0.01 -0.03 0.01

(0.07) (0.03) (0.06) (0.03) (0.05) (0.03)
[-0.45] [-0.11] [-0.34] [-0.02] [-0.10] [0.02]

R2 0.91 0.91 0.87 0.92 0.91 0.91
Mean dep. var. 11.97 2.92 9.05 5.08 12.51 7.28

Note: N = 11880. The sample is restricted to a balanced panel of two-year and four-year colleges. Finance
outcomes are aggregated to the commuting zone-level, weighted by the institution’s full-time-equivalent stu-
dent population. Institutions whose per-full-time equivalent revenues or expenditures are less than $100 or
greater than $1,000,000 are dropped. Panel A reports log revenues and expenditures per capita (multiplied by
100); Panel B reports log revenues and expenditures per capita (multiplied by 100); Panel C reports revenues
and expenditures per capita. All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector
of CZ covariates are defined at the bottom of Table 1. All regressions include commuting zone and region-
by-year fixed effects. Robust standard errors are clustered at the CZ level. Brackets include the implied effect
of a one standard deviation increase in exposure to PNTR. Significance level is denoted * at 10 percent, ** at
5 percent, and *** at 1 percent.
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TABLE B9. Effect of PNTR on Public College Revenues and Expenditures, IPEDS Data, 1990–2015 

Dependent variable: public college revenues Total public 
funding (1)

Federal 
funding (2)

State and 
local funding 
(3)

Tuition and 
fees (4)

Total 
education 
spending (5)

Instruction 
spending (6)

Panel A. Log dollars per capita (percent) 

PNTR × Post -0.94* 0.37 -1.00* -0.04 -0.39 -0.24 

(0.51) (0.65) (0.59) (0.48) (0.35) (0.44) 

[-2.62] [1.02] [-2.77] [-0.12] [-1.09] [-0.66] 
R2 0.90 0.90 0.87 0.95 0.90 0.90 
Mean dep. var. 932.72 779.92 904.35 843.80 939.20 884.14 

Panel B. Log total value (percent) 

PNTR × Post -0.85* 0.46 -0.91 0.05 -0.30 -0.15 

(0.51) (0.74) (0.56) (0.54) (0.36) (0.44) 
[-2.37] [1.27] [-2.52] [0.13] [-0.84] [-0.41] 

R2 0.99 0.98 0.99 0.99 1.00 1.00 

Mean dep. var. 1965.60 1812.80 1937.23 1876.69 1972.09 1917.02 
Panel C. Dollars per capita ($1,000 pc) 

PNTR × Post -0.16** -0.04 -0.12** -0.01 -0.03 0.01 
(0.07) (0.03) (0.06) (0.03) (0.05) (0.03) 

[-0.45] [-0.11] [-0.34] [-0.02] [-0.10] [0.02] 
R2 0.91 0.91 0.87 0.92 0.91 0.91 

Mean dep. var. 11.97 2.92 9.05 5.08 12.51 7.28 

Note: N = 11880. The sample is restricted to a balanced panel of two-year and four-year colleges. Finance outcomes are aggregated to the 
commuting zone-level, weighted by the institution’s full-time-equivalent stu- dent population. Institutions whose per-full-time equivalent 
revenues or expenditures are less than $100 or greater than $1,000,000 are dropped. Panel A reports log revenues and expenditures per 
capita (multiplied by 100); Panel B reports log revenues and expenditures per capita (multiplied by 100); Panel C reports revenues and 
expenditures per capita. All regressions are weighted by CZs’ 18 to 34 population in 1990. The vector of CZ covariates are defined at the 
bottom of Table 1.

All regressions include commuting zone and region- by-year fixed effects. Robust standard errors are clustered at the 
CZ level. Brackets include the implied effect of a one standard deviation increase in exposure to PNTR. Significance 
level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B10. Sensitivity Analysis of Schooling and Labor Market Estimates, NLSY97 Data

Dependent variable:
college attainment and
labor market outcomes
from 2001 to age 30

Has
enrolled
at 2-year
colleges

(1)

Has
enrolled
at 4-year
colleges

(2)

Has
received

associate’s
degree

(3)

Has
received

bachelor’s
degree

(4)

Hourly
wages,
not in
school

(5)

Has
received
unemp.

insurance
(6)

Panel A. Preferred
Lived in high PNTR CZs in 1997 -1.09 -0.71 -1.11 1.64 -0.76** 4.55**

(2.34) (1.60) (1.31) (1.46) (0.37) (2.17)
R2 0.04 0.32 0.02 0.32 0.11 0.04
Panel B. Proxy for unobservables
Lived in high PNTR CZs in 1997 -1.00 -0.84 -1.11 1.46 -0.75** 4.67**

(2.33) (1.59) (1.31) (1.40) (0.36) (2.12)
R2 0.05 0.34 0.02 0.35 0.12 0.05
Panel C. No baseline controls
Lived in high PNTR CZs in 1997 -1.71 -1.57 -1.47 1.03 -0.74* 4.85**

(2.33) (2.69) (1.28) (2.48) (0.43) (2.30)
0.02 0.02 0.01 0.02 0.03 0.02

Panel D. CZ unemp. rate
Lived in high PNTR CZs in 1997 -1.17 -0.73 -1.12 1.51 -0.77** 4.34**

(2.31) (1.60) (1.31) (1.44) (0.37) (2.12)
R2 0.04 0.32 0.02 0.32 0.11 0.05
Panel E. Housing boom
Lived in high PNTR CZs in 1997 -0.96 -1.07 -1.20 1.48 -0.76** 4.29**

(2.32) (1.56) (1.30) (1.45) (0.37) (2.14)
R2 0.04 0.32 0.02 0.32 0.11 0.05

Note: N = 6,772 except for Panel E (N = 6,760). All regressions are weighted by NLSY97 sampling
weight. Except for Panel C, all regressions include the full set of CZ and individual covariates as in
Table B10. Panel B additionally includes measures of social and noncognitive skills and 1997 peer
and school summary indices; Panel D additionally includes CZ unemployment rate at age 19; Panel
E additionally includes estimates of structural breaks in local housing prices. All regressions include
region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Significance level is
denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B10. Sensitivity Analysis of Schooling and Labor Market Estimates, NLSY97 Data 

Dependent variable: college attainment and 
labor market outcomes from 2001 to age 30 

Has enrolled 
at 2-year 
colleges (1) 

Has enrolled 
at 4-year 
colleges (2) 

Has received 
associate’s 
degree (3) 

Has received 
bachelor’s 
degree (4) 

Hourly 
wages, not in 
school (5) 

Has unemp. 
(6) 

Panel A. Preferred 

Lived in high PNTR CZs in 1997 -1.09 -0.71 -1.11 1.64 -0.76** 4.55** 

R2 0.04 0.32 0.02 0.32 0.11 0.04 
Panel B. Proxy for unobservables 

Lived in high PNTR CZs in 1997 -1.00 -0.84 -1.11 1.46 -0.75** 4.67** 

R2 0.05 0.34 0.02 0.35 0.12 0.05 

Panel C. No baseline controls 

Lived in high PNTR CZs in 1997 -1.71 -1.57 -1.47 1.03 -0.74* 4.85** 
(2.33) (2.69) (1.28) (2.48) (0.43) (2.30) 

0.02 0.02 0.01 0.02 0.03 0.02 
Panel D. CZ unemp. rate 
Lived in high PNTR CZs in 1997 -1.17 -0.73 -1.12 1.51 -0.77** 4.34** 

(2.31) (1.60) (1.31) (1.44) (0.37) (2.12) 

R2 0.04 0.32 0.02 0.32 0.11 0.05 
Panel E. Housing boom 
Lived in high PNTR CZs in 1997 -0.96 -1.07 -1.20 1.48 -0.76** 4.29** 

(2.32) (1.56) (1.30) (1.45) (0.37) (2.14) 
R2 0.04 0.32 0.02 0.32 0.11 0.05 

Note: N= 6,772 except for Panel E (N= 6,760). All regressions are weighted by NLSY97 sampling weight. Except for 
Panel C, all regressions include the full set of CZ and individual covariates as in Table B10.

Panel B additionally includes measures of social and noncognitive skills and 1997 peer and school summary indices; 
Panel D additionally includes CZ unemployment rate at age 19; Panel E additionally includes estimates of structural 
breaks in local housing prices. All regressions include region-by-year fixed effects. Robust standard errors are 
clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B11. Relationships Between PNTR and School to Work Transitions, NLSY97 Data

Dependent variable:
timing of college
enrollment and labor
market outcome,
from 2001 to age 30

Has
enrolled
at 2-year
colleges,
age ≤ 25

(1)

Has
enrolled
at 2-year
colleges,
age > 25

(2)

Has
enrolled
at 4-year
colleges,
age ≤ 25

(3)

Has
enrolled
at 4-year
colleges,
age > 25

(4)

Hourly
wages,
not in

school,
age ≤ 25

(5)

Hourly
wages,
not in

school,
ages > 25

(6)

Has
received
unemp.

insurance,
age ≤ 25

(7)

Has
received
unemp.

insurance,
age > 25

(8)

Panel A. Continuous PNTR
Implied effect of PNTR (1SD) 0.61 0.43* -0.51 -0.11 -0.13* -0.12 0.45 -0.04

(0.38) (0.24) (0.31) (0.21) (0.08) (0.10) (0.39) (0.36)
[2.00] [1.41] [-1.67] [-0.36] [-0.43] [-0.39] [1.48] [-0.13]

R2 0.05 0.02 0.34 0.02 0.06 0.09 0.04 0.03
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 -1.67 0.70 -0.74 -0.25 -1.07** -0.66 4.93** 1.57

(2.05) (1.26) (1.60) (1.14) (0.42) (0.54) (2.19) (1.65)
R2 0.05 0.02 0.34 0.02 0.06 0.09 0.04 0.03
Mean dep. var. 22.98 9.77 37.88 9.36 15.53 19.38 14.57 18.29
Observations 6772 6764 6772 6764 6772 6395 6772 6771

Note: All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates
are defined at the bottom of Table 1. Individual baseline covariates include demographic information, family background, household structure,
household income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed effects. Robust standard errors
are clustered at the CZ level.
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TABLE B11. Relationships Between PNTR and School to Work Transitions, NLSY97 Data 

Dependent variable: timing of college enrollment 
and labor market outcome, from 2001 to age 30 

Has enrolled at 
2-year colleges, 
age ≤ 25 (1) 

Has enrolled at 
2-year colleges, 
age > 25 (2) 

Has enrolled at 
4-year colleges, 
age ≤ 25 (3) 

Has enrolled at 
4-year colleges, 
age > 25 (4) 

Hourly wages, 
not in school, 
age ≤ 25 (5) 

Hourly wages, 
not in school, 
ages > 25 (6) 

Has received 
unemp. 
insurance, age ≤ 
25 (7) 

Has received 
unemp. insurance, 
age > 25 (8) 

Panel A. Continuous PNTR 

Implied effect of PNTR (1SD) 0.61 0.43* -0.51 -0.11 -0.13* -0.12 0.45 -0.04 

(0.38) (0.24) (0.31) (0.21) (0.08) (0.10) (0.39) (0.36) 

[2.00] [1.41] [-1.67] [-0.36] [-0.43] [-0.39] [1.48] [-0.13] 
R2 0.05 0.02 0.34 0.02 0.06 0.09 0.04 0.03 

 

Panel B. Binary PNTR Lived in high PNTR CZs 
in 1997 

-1.67 0.70 -0.74 -0.25 -1.07** -0.66 4.93** 1.57 

(2.05) (1.26) (1.60) (1.14) (0.42) (0.54) (2.19) (1.65) 
R2 0.05 0.02 0.34 0.02 0.06 0.09 0.04 0.03 

Mean dep. var. 22.98 9.77 37.88 9.36 15.53 19.38 14.57 18.29 

Observations 6772 6764 6772 6764 6772 6395 6772 6771 

Note: All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, household income, and AFTQ scores as defined in the 
main article. All regressions include region-by-year fixed effects. Robust standard errors are clustered at the CZ level.



TABLE B12. Effect of PNTR on the Individual Components of the Various Exposure Summary Indices, NLSY97 Data

Dependent variable:
geographic, industry,
and occupation exposure,
from 2001 to age 30

100 ×
CZ

PNTR
z-score

(1)

Has
lived in a
different

CZ as 1997
(2)

Has
lived in a
different

state as 1997
(3)

100 ×
industry
PNTR
z-score

(4)

Has
been

employed
in mfg

(5)

100 ×
Social
skills

z-score
(6)

100 ×
Routine

skills
z-score

(7)

100 ×
Math
skills

z-score
(8)

Panel A. Continuous PNTR
PNTR 25.92*** -0.29 -0.41 4.04*** 1.52*** -0.63 0.80 -0.55

(0.67) (0.52) (0.49) (0.99) (0.33) (0.67) (0.74) (0.73)
[85.02] [-0.95] [-1.34] [13.25] [4.99] [-2.07] [2.62] [-1.80]

R2 0.79 0.11 0.08 0.05 0.07 0.25 0.08 0.19
Panel B. Binary measure
Lived in high PNTR CZs in 1997 71.76*** -0.20 -0.54 14.38** 5.07*** -4.64 4.72 -3.26

(7.93) (1.98) (2.48) (5.70) (1.86) (3.51) (4.49) (4.29)
R2 0.65 0.11 0.08 0.05 0.07 0.25 0.08 0.19
Mean dep. var. 0.00 51.50 33.55 0.00 24.31 0.00 0.00 0.00

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector
of CZ covariates are defined at the bottom of Table 1. Individual baseline covariates include demographic information, family background,
household structure, household income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed effects.
Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B12. Effect of PNTR on the Individual Components of the Various Exposure Summary Indices, NLSY97 Data 

Dependent variable: geographic, industry, and 
occupation exposure, from 2001 to age 30 

100 × CZ PNTR 
z-score (1) 

Has lived in a 
different CZ as 
1997 (2) 

Has lived in a different 
state as 1997 (3) 

100 × industry 
PNTR z-score 
(4) 

Has been 
employed in mfg 
(5) 

100 × Social 
skills z-score 
(6) 

100 × Routine 
skills z-score 
(7) 

100 × Math skills 
z-score (8) 

Panel A. Continuous PNTR 

PNTR 25.92*** -0.29 -0.41 4.04*** 1.52*** -0.63 0.80 -0.55 

(0.67) (0.52) (0.49) (0.99) (0.33) (0.67) (0.74) (0.73) 

[85.02] [-0.95] [-1.34] [13.25] [4.99] [-2.07] [2.62] [-1.80] 

R2 0.79 0.11 0.08 0.05 0.07 0.25 0.08 0.19 

Panel B. Binary measure 

Lived in high PNTR CZs in 1997 71.76*** -0.20 -0.54 14.38** 5.07*** -4.64 4.72 -3.26 

(7.93) (1.98) (2.48) (5.70) (1.86) (3.51) (4.49) (4.29) 

R2 0.65 0.11 0.08 0.05 0.07 0.25 0.08 0.19 

Mean dep. var. 0.00 51.50 33.55 0.00 24.31 0.00 0.00 0.00 

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Individual baseline covariates include demographic 
information, family background, household structure, household income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Significance level is 
denoted * at 10 percent, ** at 5 percent, and *** at 1 percent. 



TABLE B13. Effect of PNTR on the Individual Components of the Criminal Behavior Summary Index,
NLSY97 Data

Dependent variable:
individual component
of criminal behavior
summary index
(nonstandardized)

Has
been

arrested
(1)

Has
been

incarcerated
(2)

Has
left job

as a result of
being in jail

(3)

Has not
looked for work

as a result of
being in jail

(4)

Panel A. Continuous PNTR
PNTR 0.25 0.13 0.06 0.15

(0.32) (0.24) (0.11) (0.19)
[0.82] [0.43] [0.20] [0.49]

R2 0.12 0.08 0.04 0.08
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 3.41** 3.18*** 0.83 2.06**

(1.57) (1.02) (0.51) (0.85)
R2 0.12 0.08 0.04 0.08
Mean dep. var. 26.36 7.94 2.44 5.34

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by
NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Individual
baseline covariates include demographic information, family background, household structure, household
income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed ef-
fects. Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, **
at 5 percent, and *** at 1 percent.
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TABLE B13. Effect of PNTR on the Individual Components of the Criminal Behavior Summary Index, 
NLSY97 Data 
Dependent variable: individual component of 
criminal behavior summary index (nonstandardized) 

Has been 
arrested (1) 

Has been 
incarcerated (2) 

Has left job as a 
result of being in jail 
(3) 

Has not looked for work as a 
result of being in jail (4) 

Panel A. Continuous PNTR 

PNTR 0.25 0.13 0.06 0.15 

(0.32) (0.24) (0.11) (0.19) 

[0.82] [0.43] [0.20] [0.49] 
R2 0.12 0.08 0.04 0.08 

Panel B. Binary PNTR 

Lived in high PNTR CZs in 1997 3.41** 3.18*** 0.83 2.06** 
(1.57) (1.02) (0.51) (0.85) 

R2 0.12 0.08 0.04 0.08 

Mean dep. var. 26.36 7.94 2.44 5.34 

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the 
bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, household 
income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed ef- fects. Robust 
standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 
percent.



TABLE B14. Effect of PNTR on the Individual Components of the Risky Health Behavior Summary Index, NLSY97 Data

Dependent variable:
individual component
of health risk behavior
summary index
(nonstandardized) and
incidences of cigarette
and marijuana use

Days
drank

alcohol
in last

30 days
(1)

Times
used
drugs
since
last

interview
(2)

Days
drank

alcohol
before/during
school/work

in last
30 days

(3)

Times
used
drugs

before/during
school/work

in last
30 days

(4)

Days
smoked

cigs.
in last

30 days
(5)

Times
used

marij.
in last

30 days
(6)

Time
used

marij.
before/during
school/work

in last
30 days

(7)

Panel A. Continuous PNTR
PNTR 0.02 0.23** 0.01* 0.01*** 0.06 -0.01 -0.01

(0.04) (0.09) (0.01) (0.00) (0.08) (0.04) (0.01)
[0.07] [0.75] [0.03] [0.03] [0.20] [-0.03] [-0.03]

R2 0.11 0.02 0.04 0.02 0.11 0.03 0.02
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 0.29* 0.99** 0.09** 0.05** 0.07 0.37* 0.02

(0.16) (0.45) (0.04) (0.02) (0.40) (0.21) (0.08)
R2 0.11 0.02 0.04 0.02 0.11 0.04 0.02
Mean dep. var. 4.76 2.33 0.32 0.09 8.86 2.17 0.57

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector
of CZ covariates are defined at the bottom of Table 1. Individual baseline covariates include demographic information, family background,
household structure, household income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed effects.
Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.
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TABLE B14. Effect of PNTR on the Individual Components of the Risky Health Behavior Summary Index, NLSY97 Data 

Dependent variable: individual component of health 
risk behavior summary index (nonstandardized) and 
incidences of cigarette and marijuana use 

Days drank 
alcohol in last 
30 days (1) 

Times used 
drugs since last 
interview (2) 

Days drank alcohol 
before/during 
school/work in last 30 
days (3) 

Times used drugs 
before/during 
school/work in last 30 
days (4) 

Days smoked 
cigs. in last 30 
days (5) 

Times used 
marij. in last 30 
days (6) 

Time used marij. 
before/during 
school/work in last 30 
days (7) 

Panel A. Continuous PNTR 

PNTR 0.02 (0.04) 
[0.07] 

0.23** (0.09) 
[0.75] 

0.01* (0.01) [0.03] 0.01*** (0.00) [0.03] 0.06 (0.08) 
[0.20] 

-0.01 (0.04) 
[-0.03] 

-0.01 (0.01) [-0.03] 

R2 [0.07] 0.11 [0.75] 0.02 [0.03] 0.04 [0.03] 0.02 [0.20] 0.11 [-0.03] 0.03 [-0.03] 0.02 

Panel B. Binary PNTR 

Panel B. Binary PNTR Lived in high PNTR CZs in 
1997 

0.29* (0.16) 0.99** (0.45) 0.09** (0.04) 0.05** (0.02) 0.07 (0.40) 0.37* (0.21) 0.02 (0.08) 

R2 (0.16) 0.11 (0.45) 0.02 (0.04) 0.04 (0.02) 0.02 (0.40) 0.11 (0.21) 0.04 (0.08) 0.02 

Mean dep. var. 4.76 2.33 0.32 0.09 8.86 2.17 0.57 

Note: N=6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, household income, and AFTQ scores as defined in the main article. All regressions include 
region-by-year fixed effects. Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 percent.



TABLE B15. Effect of PNTR on the Individual Components of the Life Event Summary Index, NLSY97
Data

Dependent variable:
individual component
of life event
summary index
(nonstandardized)

Has
left job

because of
family
reasons

(1)

Has not
looked

for work
because of

family
reasons

(2)

Has had
at least 1
child as a

college-goer
(3)

Has had
at least 3

children as a
college-goer

(4)

Has been
a single

parent as a
college-goer

(5)

Panel A. Continuous PNTR
PNTR -0.03 0.02 0.04 0.09 -0.30

(0.31) (0.10) (0.22) (0.20) (0.29)
[-0.10] [0.07] [0.13] [0.30] [-0.98]

R2 0.06 0.02 0.07 0.12 0.19
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 0.24 0.87 1.23 0.39 -1.48

(1.32) (0.54) (0.97) (0.96) (1.41)
R2 0.06 0.02 0.07 0.12 0.19
Mean dep. var. 11.59 1.97 7.00 11.67 27.15

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by
NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Individual
baseline covariates include demographic information, family background, household structure, household
income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed ef-
fects. Robust standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent,
** at 5 percent, and *** at 1 percent.
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TABLE B15. Effect of PNTR on the Individual Components of the Life Event Summary Index, 
NLSY97 Data 

Dependent variable: individual component of 
life event summary index (nonstandardized) 

Has left job 
because of 
family reasons 
(1) 

Has not 
looked for 
work because 
of family 
reasons (2) 

Has had at least 1 
child as a 
college-goer (3) 

Has had at least 3 
children as a 
college-goer (4) 

Has been a single 
parent as a 
college-goer (5) 

Panel A. Continuous PNTR      

PNTR -0.03 (0.31) 
[-0.10] 

0.02 (0.10) 
[0.07] 

0.04 (0.22) [0.13] 0.09 (0.20) [0.30] -0.30 (0.29) [-0.98] 

R2 0.06 0.02 0.07 0.12 0.19 
Panel B. Binary PNTR      
Lived in high PNTR CZs in 1997 0.24 (1.32) 0.87 (0.54) 1.23 (0.97) 0.39 (0.96) -1.48 (1.41) 

R2 0.06 0.02 0.07 0.12 0.19 

Mean dep. var. 11.59 1.97 7.00 11.67 27.15 

Note: N = 6,772. All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the 
bottom of Table 1.

Individual baseline covariates include demographic information, family background, household structure, household 
income, and AFTQ scores as defined in the main article. All regressions include region-by-year fixed ef- fects. Robust 
standard errors are clustered at the CZ level. Significance level is denoted * at 10 percent, ** at 5 percent, and *** at 1 
percent.



TABLE B16. Effect of PNTR on the Individual Components of the Adult Economic Success Sum-
mary Index, NLSY97 Data

Dependent variable:
individual component of
adult economic success
sumary index
(nonstandardized)

Total
assets

at age 30
(thousands)

(1)

Has
owned a

home
by age 30

(2)

Has
been

married
by age 30

(3)

Has lived
in a different
state as 1997

by age 30
(4)

Live in a
high SES

county
at age 30

(5)

Panel A. Continuous PNTR
PNTR -0.46 0.11 -0.37 -0.41 -0.20***

(0.67) (0.34) (0.34) (0.49) (0.07)
[-1.51] [0.36] [-1.21] [-1.34] [-0.66]

R2 0.10 0.09 0.08 0.08 0.24
Panel B. Binary PNTR
Lived in high PNTR CZs in 1997 -2.63 -0.13 -1.58 -0.54 -0.21

(3.74) (1.80) (2.35) (2.48) (0.49)
R2 0.10 0.09 0.08 0.08 0.24
Mean dep. var. 61.63 32.69 52.16 33.55 15.71
Observations 6656 6759 6772 6772 6769

Note: All regressions include CZ and individual baseline covariates and are weighted by NLSY97
sampling weights. The vector of CZ covariates are defined at the bottom of Table 1. Individ-
ual baseline covariates include demographic information, family background, household structure,
household income, and AFTQ scores as defined in the main article. All regressions include region-
by-year fixed effects. Robust standard errors are clustered at the CZ level.
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TABLE B16. Effect of PNTR on the Individual Components of the Adult Economic 
Success Sum- mary Index, NLSY97 Data 
Dependent variable: individual component of adult 
economic success sumary index 
(nonstandardized) 

Total assets at 
age 30 
(thousands) (1) 

Has owned a 
home by age 
30 (2) 

Has been 
married by age 
30 (3) 

Has lived in a 
different state as 
1997 by age 30 (4) 

Live in a high 
SES county at 
age 30 (5) 

Panel A. Continuous PNTR 

PNTR -0.46 0.11 -0.37 -0.41 -0.20*** 

(0.67) (0.34) (0.34) (0.49) (0.07) 

[-1.51] [0.36] [-1.21] [-1.34] [-0.66] 

R2 0.10 0.09 0.08 0.08 0.24 

Panel B. Binary PNTR 

Lived in high PNTR CZs in 1997 -2.63 -0.13 -1.58 -0.54 -0.21 

(3.74) (1.80) (2.35) (2.48) (0.49) 

R2 0.10 0.09 0.08 0.08 0.24 

Mean dep. var. 61.63 32.69 52.16 33.55 15.71 

Observations 6656 6759 6772 6772 6769 

Note: All regressions include CZ and individual baseline covariates and are weighted by NLSY97 sampling weights. The vector of CZ covariates are defined at the bottom of Table 
1.

Individ- ual baseline covariates include demographic information, family background, household structure, household income, and AFTQ scores as defined in the main article. All 
regressions include region- by-year fixed effects. Robust standard errors are clustered at the CZ level.
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